Molecular Structures of Amino Acids and Peptides.
 II. A Redetermination of the Crystal Structure of L-O-Serine Phosphate. A Very Short Phosphate-Carboxyl Hydrogen Bond

By M.Sundaralingam* and_E.F. Putkey \dagger
Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A.

(Received 4 June 1969)

Abstract

L - O-Serine phosphate crystallized from aqueous solution in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$, with cell dimensions $a=7 \cdot 737 \pm 0 \cdot 0003, b=10 \cdot 167 \pm 0 \cdot 0003$ and $c=9 \cdot 136 \pm 0 \cdot 0004 \AA$. The calculated and observed densities, assuming $Z=4$, are 1.718 and $1.739 \mathrm{~g} . \mathrm{cm}^{-3}$ respectively. The structure was solved by the heavy-atom technique and refined by full-matrix least squares to an R index of 0.027 , using 713 reflections collected on a Picker automatic diffractometer. The estimated standard deviations in the bond distances and bond angles are $\mathrm{P}-\mathrm{O}, 0.003 ; \mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}, 0.005 ; \mathrm{C}-\mathrm{H}, \mathrm{N}-\mathrm{H}, \mathrm{O}-\mathrm{H}, 0.04 \AA$; $\mathrm{O}-\mathrm{P}-\mathrm{O}, 0.12^{\circ}$; $\mathrm{P}-\mathrm{O}-\mathrm{C}, 0.20^{\circ}$; the remaining bond angles are 0.25°. The structure includes a very short hydrogen bond, $\mathrm{P}=\mathrm{O} \cdots \mathrm{H}-\mathrm{OC}-2 \cdot 492 \AA$, between a phosphate oxygen atom and the carboxyl group. The shortest hydrogen bond, P-O-… $-\mathrm{O}-\mathrm{P}$, between phosphate groups is $2 \cdot 558 \AA$. Three more hydrogen bonds involve the ammonium group which is protonated by one of the phosphate protons to carbonyl oxygen atom and the phosphate ester oxygen atom do not participate in hydrogen bonding; the latter feature is characteristic of all known phosphate esters. Variations in bond distances and bond angles in the phosphates is attributed to conformational and hydrogen bonding differences. The molecular structures and conformations of the accurately analyzed amino acids are reviewed. It is seen that the $\mathrm{C}(1)\left(s p^{2}\right)-\mathrm{C}(2)\left(s p^{3}\right)$ bond distance of amino acids is similar to that of the $\mathrm{C}(2)\left(s p^{3}\right)-\mathrm{C}(3)\left(s p^{3}\right)$ bond. Also, the ammonium nitrogen atom, as a general rule, is not coplanar with the carboxyl group. The $\mathrm{P}-\mathrm{O}$ bond distances and the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ valence angles in the known monophosphate monoanions are tabulated.

Introduction

The recent solution of the structure of DL-serine phosphate monohydrate in our laboratory (Putkey \& Sundaralingam, 1970) showed the presence of two very short hydrogen bonds involving the phosphates. A previous communication on the structure of L -serine phosphate by McCallum, Robertson \& Sim (1959) showed the presence of a similar short hydrogen bond, in this case between a phosphate group and a carboxyl group. These workers did not publish the atomic coordinates. The present redetermination of the structure of L -serine phosphate was undertaken to obtain more accurate information relating to this short hydrogen bond, bond distances and bond angles.

Experimental

Colorless crystals were grown from an aqueous solution of L-serine phosphate obtained from Cyclo Chemical Corporation. All X-ray data were taken using a

[^0]crystal of dimensions $0.2 \times 0.2 \times 0.4 \mathrm{~mm}$, which was cut from a large rectangular prismatic crystal. Weissenberg and precession photographs showed the space group extinctions $h=2 n+1$ for $h 00, k=2 n+1$ for $0 k 0$, and $l=2 n+1$ for $00 l$ reflections, confirming the space group $P 2_{1} 2_{1} 2_{1}$ obtained in the earlier study (McCallum et al., 1959). Precise cell constants were calculated from a least-squares refinement of the angular settings 2θ, χ, φ of twenty reflections measured on the Picker automated diffractometer. The density was measured by the flotation method using a Westphal balance and a mixture of chloroform and bromoform. A summary of the crystal data is given in Table 1.
$\mathrm{Cu} K \alpha$ intensity data up to $2 \theta=134^{\circ}$ were measured on the Picker four-angle diffractometer using a scan rate of two degrees per minute. Individual background measurements were not taken. Instead, a table of background as a function of 2θ was constructed by scanning at appropriate regions of the reciprocal sphere for the entire 2θ range for which data were collected. Background for each reflection was interpolated from the above table and subtracted from the total scan to obtain the net peak count. The criterion for rejecting weak reflections was essentially that of Klug \& Alexander (1954). A reflection was considered observed if $I_{\text {corr }}=n \sigma(I)$, where $\sigma(I)=\left(I_{\text {scan }}+I_{\text {bkg }}\right)^{1 / 2}, \quad I_{\text {corr }}=I_{\text {sean }}$
$-I_{\mathrm{bkg}}$ and $n=1 \cdot 5$. Altogether 745 reflections were scanned, and 719 were significantly above background and were utilized in the structure analysis.

The determination and refinement of crystal structure

The phosphorus atom was located using the conventional heavy-atom method on Harker sections of a sharpened three-dimensional Patterson synthesis. The sharpened coefficients were obtained by multiplying each F^{2} by $(\sin \theta / \lambda)^{2}$ (Jacobsen, Wunderlich \& Lipscomb, 1961). The remainder of the non-hydrogen atoms were located by means of a three-dimensional electron density synthesis phased upon the phosphorus atom position. A structure factor calculation based on the non-hydrogen atom coordinates and a uniform isotropic temperature factor of $3.0 \AA^{2}$ gave an R value of 0.344 , which dropped to 0.078 in three cycles of isotropic least-squares refinement. The Oak Ridge National Laboratory least-squares program ORFLS (Busing, Martin \& Levy, 1962), modified for the UNIVAC 1108 machine by Dr S. T. Rao of our laboratory, was used in the refinement. A difference

Fig. 1. Difference electron density map showing the hydrogen atoms contoured at intervals of $0 \cdot 1$ e. \AA^{-3}, beginning at $0 \cdot 1 \mathrm{e} . \AA^{-3}$.
electron density map computed at this stage showed unequivocally the positions of five hydrogen atoms. Location of the remaining hydrogen atoms was hindered by anisotropic effects of the heavier atoms. Two more isotropic least-squares cycles, including these five hydrogen atoms, lowered the R value to $0 \cdot 066$. At this stage, two anisotropic least-squares cycles on the non-hydrogen atoms reduced the R value to $0 \cdot 053$. Another difference map, including the contribution of the non-hydrogen atoms and the above five hydrogen atoms in the F_{c}, revealed the remaining three hydrogen atoms (Fig. 1). Until this point, the refinement was executed with unit weights. In subsequent least-squares cycles, a modified Hughes (1941) weighting scheme was employed. Two additional anisotropic least-squares cycles refining the positional and anisotropic temperature factors of the non-hydrogen atoms and only the positions of the hydrogen atoms gave an R value of 0.032 . The hydrogen atoms were given the anisotropic thermal parameters of the atom to which they were bonded, and these were not refined. Eliminating six reflections suffering from secondary extinction effects made the final $R=0.027$, and the weighted $R=0.038$.

The atomic scattering factors used in this work were taken from International Tables for X-ray Crystallography (1962). The hydrogen atom scattering factors were from Stewart, Davidson \& Simpson (1965). Table 2 is a listing of the observed and calculated structure factors. The final atomic parameters and their estimated standard deviations are given in Table 3. The principal axes of the thermal ellipsoids are presented in Table 4.

Discussion of the crystal structure

The bond distances and angles in l-serine phosphate are shown in Figs. 2 and 3 respectively. The standard deviations in the bond lengths and angles are: $\mathrm{P}-\mathrm{O}$, 0.003 ; C-C, C-N, C-O, 0.005; C-H, N-H, O-H, $0.04 \AA \AA$; $\mathrm{O}-\mathrm{P}-\mathrm{O}, 0 \cdot 12$; P-O-C, $0.20 ; \mathrm{C}-\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{C}-\mathrm{O}$, 0.25°; and for angles involving hydrogen atoms, 1.8°. The bond distances involving the non-hydrogen atoms from the earlier work (the standard deviations were not published) are compared with the present results in Table 5. The agreement in the two analyses is generally

Table 1. Crystal data for L-serine phosphate

	This work	McCallum et al. (1959)
Crystal system	Orthorhombic	
Space group	$P 2_{12} 2_{1}{ }_{1}$	
${ }_{a}$	$7.737 \pm 0.0003 \AA$	$7.79 \pm 0.01 \AA$
b	$10 \cdot 167 \pm 0.0003 \AA$	$10.24 \pm 0.04 \AA$
c	$9.136 \pm 0.0004 \AA$	$9.09 \pm 0.02 \AA$
V	$718.5 \AA^{\frac{3}{3}}$	$725 \cdot 1 \AA^{\text {3 }}$
Z	4	4
D_{m}	$1.739 \mathrm{g.cm}{ }^{-3}$	$1.707 \mathrm{g.cm}{ }^{-3}$
D_{x}	$1.718 \mathrm{g.cm}{ }^{-3}$	$1.692 \mathrm{~g} . \mathrm{cm}^{-3}$
Crystal dimensions	$0.2 \times 0.2 \times 0.4 \mathrm{~mm}$	

Table 2. Calculated and observed structure amplitudes $\times 10$
The following six reflections were suspected of suffering from large secondary extinction and therefore were not used in the final refinement cycles. 2002602 2830; $02026462829 ; 13016281741 ; 21114271523 ; 00225453018 ; 10218832025$.

Table 3. Final positional coordinates and anisotropic temperature factors for L-serine phosphate*
Standard deviations are shown in parentheses. All non-hydrogen parameters are $\times 10^{5}$; all hydrogen parameters are $\times 10^{4}$.

	x / a	y / b	z / c	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
\mathbf{P}	18373 (10)	47330 (7)	17671 (9)	816 (13)	405 (7)	564 (9)	33 (9)	5 (10)	11 (7)
O(1)	-931 (30)	42231 (26)	19560 (26)	898 (40)	1050 (29)	734 (30)	-60 (29)	20 (31)	-26 (62)
$\mathrm{O}(2)$	30099 (31)	35744 (21)	16406 (29)	998 (39)	401 (20)	126 (35)	58 (25)	-89 (37)	- 19 (24)
$\mathrm{O}(3)$	22563 (33)	56539 (21)	29991 (25)	1584 (49)	490 (21)	716 (29)	-81 (27)	-32 (32)	- 59 (20)
O(4)	17093 (42)	55131 (26)	3206 (27)	2087 (58)	735 (27)	671 (30)	-418 (39)	290 (39)	102 (22)
$\mathrm{O}(5)$	-24151 (42)	62348 (26)	39977 (30)	2125 (65)	464 (22)	994 (33)	134 (33)	-274 (41)	10 (23)
O(6)	-37993 (41)	58137 (25)	19025 (35)	2201 (61)	609 (24)	1395 (43)	132 (33)	-703 (50)	11 (30)
C(1)	-30383 (45)	54688 (32)	29889 (39)	987 (54)	514 (30)	929 (44)	84 (37)	41 (47)	5 (33)
C(2)	-26658 (44)	40147 (31)	32952 (48)	935 (58)	511 (31)	954 (46)	-48 (33)	-138 (52)	31 (36)
C(3)	-7301 (45)	37788 (37)	33433 (48)	972 (57)	668 (34)	953 (46)	52 (44)	-26 (57)	188 (40)
N	-34642 (43)	32453 (31)	21021 (41)	965 (52)	458 (26)	1202 (47)	50 (32)	-19 (46)	19 (29)
H(1)	2005 (54)	5073 (38)	-312 (24)						
H(2)	-466 (59)	2779 (43)	3554 (47)						
H(3)	-125 (53)	4534 (39)	4181 (41)						
H(4)	-3186 (61)	3768 (40)	4145 (46)						
H(5)	-2869 (60)	6806 (39)	3864 (41)						
H(6)	-2901 (52)	3584 (44)	1252 (42)						
H(7)	-4539 (58)	3299 (38)	2092)(45)						
H(8)	- 3271 (50)	2493 (41)	2271 (39)						

Table 4. Description of the thermal ellipsoids in L-serine phosphate
u_{i} is the root-mean-square displacement corresponding to the i th axis of the ellipsoid. $C_{i a}, C_{i b}$ and $C_{i c}$ are the direction cosines of the i th axis with respect to the crystal axes a, b, c.

	Axis i	u_{i}	$C_{i a}$	$C_{i b}$	$C_{i c}$	
P	1	$0 \cdot 144$	$0 \cdot 3018$	-0.9435	$0 \cdot 1366$	
	2	$0 \cdot 154$	$0 \cdot 2551$	-0.0581	-0.9652	
	3	$0 \cdot 159$	-0.9186	-0.3261	-0.2232	
$\mathrm{O}(1)$	1	$0 \cdot 164$	-0.9946	-0.0910	-0.0488	
	2	$0 \cdot 175$	0.0591	-0.1140	-0.9917	
	3	$0 \cdot 236$	0.0847	-0.9893	$0 \cdot 1188$	
$\mathrm{O}(2)$	1	$0 \cdot 143$	0.2268	-0.9739	-0.0050	
	2	$0 \cdot 174$	-0.9643	-0.2239	-0.1415	
	3	$0 \cdot 232$	0.1368	0.0365	-0.9899	
$\mathrm{O}(3)$	1	$0 \cdot 155$	-0.1397	-0.8992	-0.4146	
	2	$0 \cdot 178$	0.0171	0.4164	-0.9089	
	3	$0 \cdot 220$	-0.9900	$0 \cdot 1341$	0.0428	
$\mathrm{O}(4)$	1	$0 \cdot 160$	-0.2504	-0.0356	0.9675	
	2	$0 \cdot 174$	-0.4284	0.9002	-0.0778	
	3	0.273	$0 \cdot 8682$	0.4340	$0 \cdot 2407$	
O(5)	1	$0 \cdot 153$	$0 \cdot 1538$	-0.9823	$0 \cdot 1074$	
	2	$0 \cdot 197$	-0.3243	-0.1529	-0.9335	
	3	$0 \cdot 262$	-0.9334	-0.1087	$0 \cdot 3420$	
$\mathrm{O}(6)$	1	0.172	-0.3340	0.8922	-0.3039	
	2	$0 \cdot 198$	0.5568	0.4469	$0 \cdot 7002$	
	3	$0 \cdot 298$	-0.7605	-0.0646	$0 \cdot 6461$	
C(1)	1	0.157	-0.5487	0.8350	$0 \cdot 0416$	
	2	0178	$0 \cdot 8178$	$0 \cdot 5464$	-0.1806	
	3	$0 \cdot 199$	$0 \cdot 1735$	$0 \cdot 0651$	0.9827	
C(2)	1	$0 \cdot 156$	$0 \cdot 6682$	$0 \cdot 6928$	-0.2711	
	2	$0 \cdot 170$	-0.6657	0.7195	$0 \cdot 1978$	
	3	0.205	$0 \cdot 3321$	0.0483	0.9420	
C(3)	1	$0 \cdot 163$	-0.6190	0.6389	-0.4566	
	2	$0 \cdot 177$	0.7849	0.4824	-0.3890	
	3	0.217	$0 \cdot 0283$	0.5992	0.8001	
N	1	$0 \cdot 153$	$0 \cdot 3210$	-0.9462	0.0393	
	2	$0 \cdot 173$	-0.9466	-0.3219	-0.0168	
	3	$0 \cdot 226$	0.0285	-0.0318	-0.9991	
O(6)			goo	xcept	bond	(1)-O(5),
\square			C	1) and P		

Table 5. Bond distances involving non-hydrogen atoms in L-serine phosphate

	This work	McCallum et al. (1959)
$\mathrm{P}-\mathrm{O}(1)$	$1.590(3)$	1.608
$\mathrm{P}-\mathrm{O}(2)$	$1.491(2)$	1.517
$\mathrm{P}-\mathrm{O}(3)$	$1.500(2)$	1.497
$\mathrm{P}-\mathrm{O}(4)$	$1.544(3)$	1.560
$\mathrm{O}(1)-\mathrm{C}(3)$	$1.433(5)$	1.466
$\mathrm{C}(3)-\mathrm{C}(2)$	$1.517(5)$	1.526
$\mathrm{C}(2)-\mathrm{N}$	$1.477(5)$	1.468
$\mathrm{C}(2)-\mathrm{C}(1)$	$1.532(5)$	1.541
$\mathrm{C}(1)-\mathrm{O}(5)$	$1.299(4)$	1.321
$\mathrm{C}(1)-\mathrm{O}(6)$	$1.206(5)$	1.201

The carboxyl C(1)-C(2) bond distance of $1.532 \AA$ is significantly longer (about 6σ) than the value of $1 \cdot 50 \AA$ normally associated with a $C s p^{2}-C s p^{3}$ single bond and is slightly longer than the $\mathrm{C}(2)-\mathrm{C}(3)$ bond distance. The remaining bond distances in L -serine phosphate are close to the normal ones. Data for the $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(2)-\mathrm{C}(3)$ bond distances from the more accurately analyzed $(\sigma<0.015 \AA)$ amino acid structures are presented in Table 6. In general the $\mathrm{C}(1)-\mathrm{C}(2)$ $\left(s p^{2}-s p^{3}\right)$ bond distance is comparable with the
Table 6. Stereochemical features of some amino acids with standard deviations in bond distances less than $0.015 \AA$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline $$
\begin{gathered}
\mathrm{C}(1)-\mathrm{C}(2)^{*} \\
\left(s p^{2}-s p^{3}\right)
\end{gathered}
$$ \& $$
\underset{\left(s p^{3}-s p^{3}\right)}{\mathrm{C}(2)-\mathrm{C}(3)^{*}}
$$ \& ψ_{1} \& ψ_{2} \& $\mathrm{N} \cdot \mathrm{O}(2)$ \& $\mathrm{C}(3) \cdots \mathrm{O}(1)$ \& $\mathrm{C}(3) \cdots \mathrm{O}(2)$ \& Reference

\hline 1.525 \& 1.525 \& $161 \cdot 5$ \& $340 \cdot 7$ \& $2 \cdot 682$ \& 3.079 \& $3 \cdot 326$ \& Simpson \& Marsh (1966)

\hline 1.547 \& 1.542 \& 167.9 \& $349 \cdot 3$ \& 2.708 \& 2.987 \& $3 \cdot 384$ \& Karle \& Karle (1964)

\hline $1 \cdot 543$ \& $1 \cdot 518$ \& $144 \cdot 8$ \& $322 \cdot 2$ \& 2.737 \& $3 \cdot 191$ \& 3.095 \& Derissen, Endeman \& Peerdeman (1968)

\hline 1.512 \& 1.564 \& $162 \cdot 5$ \& $339 \cdot 4$ \& 2.667 \& 3-108 \& 3-285 \& Ichikawa \& Iitaka (1968)

\hline $1 \cdot 509$ \& $1 \cdot 564$ \& $150 \cdot 9$ \& 328.8 \& $2 \cdot 726$ \& $3 \cdot 240$ \& $3 \cdot 226$ \& Ichikawa \& Iitaka (1968)

\hline $1 \cdot 51$ \& $1 \cdot 51$ \& $176 \cdot 4$ \& $357 \cdot 0$ \& 2.654 \& 2.940 \& $3 \cdot 424$ \& Harding \& Long (1968)

\hline 1.543 \& $1 \cdot 509$ \& $168 \cdot 3$ \& $342 \cdot 4$ \& 2.623 \& 2.999 \& 3.419 \& Oughton \& Harrison (1959)

\hline 1.523 \& - \& $198 \cdot 3$ \& $340 \cdot 9$ \& $2 \cdot 690$ \& - \& - \& Marsh (1958)

\hline 1.521 \& - \& $156 \cdot 3$ \& $332 \cdot 7$ \& $2 \cdot 700$ \& - \& - \& Iitaka (1960)

\hline $1 \cdot 527$ \& - \& $168 \cdot 3$ \& $345 \cdot 0$ \& $2 \cdot 687$ \& - \& - \& Iitaka (1961)

\hline 1.530 \& 1.527 \& $179 \cdot 5$ \& $0 \cdot 4$ \& $2 \cdot 668$ \& $2 \cdot 919$ \& $3 \cdot 527$ \& Donohue \& Caron (1964)

\hline 1.516 \& $1 \cdot 532$ \& $178 \cdot 0$ \& 356.9 \& $2 \cdot 665$ \& 3.005 \& 3.444 \& Donohue \& Trueblood (1952)

\hline 1.529 \& $1 \cdot 524$ \& $162 \cdot 1$ \& $340 \cdot 1$ \& 2.661 \& 3.043 \& $3 \cdot 301$ \& Wright \& Marsh (1962)

\hline 1.541 \& 1.529 \& $144 \cdot 2$ \& 321.9 \& 2.774 \& 3.254 \& $3 \cdot 119$ \& Chiba, et al. (1967)

\hline 1.505

1.528 \& $1 \cdot 550$ \& $177 \cdot 5$ \& $358 \cdot 9$ \& $2 \cdot 655$ \& 2.915 \& $3 \cdot 551$ \& Vainshtein \& Gurskaya (1964) Gurskaya (1968)

\hline 1.528
1.522 \& 1.513
1.518 \& $181 \cdot 3$ \& $3 \cdot 8$ \& $2 \cdot 630$ \& $2 \cdot 896$ \& 3.990 \& Shoemaker, Barieau, Donohue \& Lu (1953)

\hline 1.522
1.532 \& $1 \cdot 518$
1.518 \& $164 \cdot 7$
178.8 \& $344 \cdot 8$
$357 \cdot 4$ \& 2.742
2.631 \& 2.939 \& $3 \cdot 335$ \& Putkey \& Sundaralingam
(1970)

\hline 1.532
1.517 \& $1 \cdot 518$ \& 178.8 \& 357.4 \& 2.631 \& $2 \cdot 880$ \& $3 \cdot 413$ \& This work

\hline 1.517
1.528 \& $1 \cdot 542$ \& $156 \cdot 1$ \& $333 \cdot 9$ \& $2 \cdot 672$ \& $3 \cdot 170$ \& $3 \cdot 276$ \& Shoemaker, Donohue, Schomaker \& Corey (1950)

\hline $1 \cdot 528$ \& $1 \cdot 538$ \& $164 \cdot 6$ \& $341 \cdot 5$ \& $2 \cdot 685$ \& $3 \cdot 028$ \& $3 \cdot 335$ \& Fries \& Sundaralingam (1969a)

\hline 1.509 \& 1.557 \& $170 \cdot 2$ \& 348.8 \& $2 \cdot 640$ \& $3 \cdot 042$ \& $3 \cdot 456$ \& Ando et al. (1967)

\hline $1 \cdot 527$ \& $1 \cdot 541$ \& $156 \cdot 0$ \& $335 \cdot 8$ \& $2 \cdot 671$ \& $3 \cdot 167$ \& 3.326 \& Mallikarjunan \& Rao (1969)

\hline
\end{tabular}

 $* \infty$
L-Alanine
L-Arginine. $2 \mathrm{H}_{2} \mathrm{O} \dagger$
L-Aspartic acid \dagger

DL- α-n-Butyric acid
L-Cysteine
L-Cystine
Glycine
β-Glycine
γ-Glycine
L-Histidine. $\mathrm{HCl} .2 \mathrm{H}_{2} \mathrm{O}$
Hydroxy-L-proline \dagger
L-Lysine. $\mathrm{HCl} .2 \mathrm{H}_{2} \mathrm{O}$
L-Ornithine. HCl
L-Phenylalanine. HCl^{*}
DL-Serine
DL-O-Serine phosphate
monohydrate
L-O-Serine phosphate
L-Threonine
L-O-Tyrosine
sulfate-K. $2 \mathrm{H}_{2} \mathrm{O}$
L-Valine. $\mathrm{HCl} \ddagger$
L-Valine

Fig. 3. Bond angles in L-serine phosphate. The bond angles not shown in the Figure are: $\mathrm{O}(1) \mathrm{PO}(2), 108.8 ; \mathrm{O}(3) \mathrm{PO}(4)$, $109 \cdot 6$; $\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3), 110 \cdot 1 ; \mathrm{H}(4) \mathrm{C}(2) \mathrm{N}, 111 \cdot 6 ; \mathrm{C}(2) \mathrm{C}(3) \mathrm{H}(2)$, $110 \cdot 4 ; \quad \mathrm{H}(3) \mathrm{C}(3) \mathrm{O}(1), 103 \cdot 4 ; \quad \mathrm{C}(2) \mathrm{NH}(6), 107 \cdot 4$; and $\mathrm{H}(7) \mathrm{NH}(8), 1156^{\circ}$.

Fig.4. Weighted average bond distances and angles in the amino acid residues with an un-ionized carboxyl group.
$\mathrm{C}(2)-\mathrm{C}(3)\left(s p^{3}-s p^{3}\right)$ bond distance. We attribute the lengthening of the $\mathrm{C}(1)-\mathrm{C}(2)$ bond distance from the normal $s p^{2}-s p^{3}$ value to the presence of the α-amino substituent, which is syn to the carbonyl group, thus providing nonbonded interactions between the carbonyl group and the ammonium group (see below). A similar lengthening of the carboxyl $\mathrm{C}-\mathrm{C}$ bond is not observed in the normal carboxylic acids.
The weighted average bond distances and angles for the amino acid residues with an un-ionized carboxyl group are shown in Fig.4. These values may be compared with those of the ionized amino acids reported recently by Marsh \& Donohue (1967). Apart from the differences in the $\mathrm{P}-\mathrm{O}$ bond distances, the agreement between the bond distances in l-serine phosphate and DL-serine phosphate is quite good. In the monoanionic monophosphates, the negative charge on the phosphate group is mainly delocalized among the phosphate bonds, $\mathrm{P}-\mathrm{O}(2)(1.491 \AA)$ and $\mathrm{P}-\mathrm{O}(3)(1.500 \AA)$; however, there is a tendency for the $\mathrm{P}-\mathrm{O}^{-}$bond to be slightly longer than the $\mathrm{P}=\mathrm{O}$ bond, as seen in all of the known phosphates (Table 7). The $\mathrm{P}-\mathrm{O}$ bond length order in monoanionic phosphates is

$$
\mathrm{P}-\mathrm{OC}>\mathrm{P}-\mathrm{OH}>\mathrm{P}-\mathrm{O}^{ \pm-}\left(\mathrm{P}=\mathrm{O}-\mathrm{P} \leftrightarrow \mathrm{O}^{-}\right),
$$

with a difference of about $0.05 \AA$ between $\mathrm{P}-\mathrm{OC}$ and $\mathrm{P}-\mathrm{OH}$ on one hand and $\mathrm{P}-\mathrm{OH}$ and $\mathrm{P}-\mathrm{O}^{\frac{1}{2}-}$ on the other (Cruickshank, 1961 ; Sundaralingam \& Jensen, $1965 b$). Hence, a knowledge of the $\mathrm{P}-\mathrm{O}$ bond distances is sufficient to indicate the presence or absence of a hydrogen substituent on the phosphate oxygen atoms.

The $\mathrm{O}-\mathrm{P}-\mathrm{O}$ valence angles in L -serine phosphate range from $101 \cdot 5$ to $114 \cdot 8^{\circ}$. The smallest angle involves the substituted oxygen atoms $O(1)$ and $O(4)$, while the largest angle involves the unsubstituted atoms $\mathrm{O}(2)$ and $O(3)$. The latter angle is about 2° smaller than the other known monoanionic phosphates (Table 7). The

Fig. 5. Weighted average bond distances and angles in the monoanionic monophosphate.

	$\mathrm{P}=0$	$\mathrm{P}-\mathrm{O}^{-}$	P-OH	P-OR	$\sum(\mathrm{P}-\mathrm{O})$	P-OC	σ^{*}
	(£)	(\AA)	(\AA)	(A)	(\AA)	(\AA)	(\AA)
Adenosine 3^{\prime}-phosphate	$1 \cdot 477$	1.486	1.579	$1 \cdot 612$	$6 \cdot 154$	1.440	0.005
Adenosine 5'-phosphate	$1 \cdot 495$	1.503	$1 \cdot 557$	1.591	6.146	1.475	0.011
2-Aminoethanol phosphate	$1 \cdot 493$	1.504	$1 \cdot 551$	$1 \cdot 591$	$6 \cdot 144$	1.429	0.005
Cytidine 3^{\prime}-phosphate (orthorhombic)	1.483	1.501	1.553	$1 \cdot 611$	6.149	1.431	0.003
Cytidine 3'-phosphate (monoclinic)	$1 \cdot 480$	1.498	1.588	$1 \cdot 610$	$6 \cdot 196$	1.435	0.009
Galactosamine 1-phosphate	1.499	1.510	1.553	1.606	$6 \cdot 168$. 1.434	0.003
L-Serine phosphate	1.491	1.500	$1 \cdot 544$	$1 \cdot 590$	$6 \cdot 125$	1.433	0.003
Weighted average (\bar{l})	1.490	1.502	1.554	1.602	6.149	1.434	
$\sigma_{m} \dagger$	0.003	0.003	0.007	0.006	0.009	0.006	

$\mathrm{O}-\mathrm{P}-\mathrm{O}$ valence angle in the $\mathrm{C}-\mathrm{O}-\mathrm{P}-\mathrm{O}-\mathrm{H}$ system is similar to that observed for the C-O-P-O-C system of phosphodiesters (Sundaralingam, 1969). The weighted average bond distances and bond angles involving the monoanionic monophosphates are shown in Fig. 5. The small variations in the individual $\mathrm{P}-\mathrm{O}$ bond distances and the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ valence angles may be attributed to the number and strengths of the hydrogen bonds to the phosphate group and the conformation of the atom sequence $\mathrm{H}-\mathrm{O}-\mathrm{P}-\mathrm{O}-\mathrm{C}$ of the phosphate. Conformational changes usually produce changes in nonbonded interactions and therefore affect the molecular dimensions.

As in DL-serine phosphate, the $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$ bond angle of 105.3° in L-serine phosphate is considerably less than the tetrahedral value.

Molecular conformation

The conformation of the molecule is shown in Fig. 2 and compared with those of DL-serine and L_{s}-threonine in Fig. 6 and Table 8. Although the molecular conformation is similar to that of DL-serine phosphate, nonetheless there are significant differences of 2 to 20° in the torsion angles of the two compounds. These differences in the torsion angles are attributable to hydrogen bonding and molecular packing forces. Similar and even larger variations in the torsion angles of the serine (Table 8) and the serine phosphate residues of membrane proteins and lipids might conceivably occur during ion transport across biological membranes (Sundaralingam, 1968).

The ammonium group is almost perfectly staggered to the substituent on $\mathrm{C}(2)$. The ammonium nitrogen atom is only slightly displaced from the plane of the carboxyl group; the torsion angle $\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(6)$ is $-2 \cdot 6^{\circ}$. The torsion angles (Lakshminarayanan, Sasisekharan \& Ramachandran, 1967)

$$
\psi_{1}[\mathrm{~N}-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)]
$$

and

$$
\psi_{2}[\mathrm{~N}-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(2)]
$$

for the accurately analyzed amino acid structures are
shown in Table 6. It is seen that as a general rule the ammonium nitrogen atom is not coplanar with the carboxyl group [the α-hydroxy acids show a similar feature (Sundaralingam \& Putkey, 1969)]; the torsion angle ψ_{2} assumes only small $\left(0-4^{\circ}\right)$ positive values and a large range $\left(-1 \cdot 1\right.$ to $\left.-38 \cdot 1^{\circ}\right)$ of negative values. Thus, the deviation from coplanarity is such that the pref-

Fig. 6. Conformations of (a) DL-serine phosphate, (b) L-serine phosphate, (c) DL-serine, and (d) L_{δ}-threonine, viewed down the $\mathrm{C}_{\alpha}-\mathrm{C}^{\prime}$ bond. Note that the hydroxy group is anti to the ammonium groups in (a) and (b), and the ammonium nitrogen atom is displaced on the opposite side of the carboxyl group in (c).
in monoanionic monophosphates

$\mathrm{O}=\mathrm{P}-\mathrm{O}^{-}$	HO-P-O-	$\mathrm{O}=\mathrm{P}-\mathrm{OH}$	$\mathrm{O}=\mathrm{P}-\mathrm{OR}$	-O-P-OR	HO-P-OR	P-O-C	σ	
$\left({ }^{\circ}\right.$)	$\left({ }^{\circ}\right)$	$\left({ }^{\circ}\right.$)	$\left({ }^{\circ}\right)$	$\left({ }^{\circ}\right)$	$\left({ }^{\circ}\right)$	$\left({ }^{\circ}\right)$	$\left({ }^{\circ}\right.$)	Reference
$117 \cdot 2$	112.3	$107 \cdot 1$	$110 \cdot 7$	$103 \cdot 4$	$105 \cdot 5$	$119 \cdot 1$	$0 \cdot 3$	Sundaralingam (1966)
118.2	$106 \cdot 9$	$110 \cdot 2$	$108 \cdot 7$	108.7	$106 \cdot 9$	114.7	$0 \cdot 4$	Kraut \& Jensen (1963)
117.0	$109 \cdot 3$	$109 \cdot 8$	$103 \cdot 9$	$109 \cdot 6$	$106 \cdot 2$	118.7	$0 \cdot 2$	Kraut (1961)
116.0	$106 \cdot 1$	113.6	$110 \cdot 1$	108.5	$101 \cdot 5$	$121 \cdot 2$	$0 \cdot 2$	Sundaralingam \& Jensen (1965a)
117.5	$105 \cdot 4$	112.6	$105 \cdot 5$	$110 \cdot 9$	$104 \cdot 3$	118.5	1.0	Bugg \& Marsh (1967)
117.2	$110 \cdot 8$	109.6	$109 \cdot 4$	$107 \cdot 3$	$101 \cdot 3$	122.1	$0 \cdot 15$	Fries \& Sundaralingam (1966b)
114.8	$109 \cdot 6$	$112 \cdot 2$	$108 \cdot 8$	109.0	$101 \cdot 5$	$121 \cdot 5$	$0 \cdot 2$	Putkey \& Sundaralingam (1970)
$116 \cdot 6$	$109 \cdot 4$	$110 \cdot 7$	108.5	108.0	$102 \cdot 9$	$120 \cdot 6$		
$0 \cdot 43$	$1 \cdot 04$	$0 \cdot 84$	$0 \cdot 96$	$0 \cdot 90$	1.00	$1 \cdot 07$		

Fig. 7. View of the unit cell down the a axis showing the hydrogen bonding pattern and the alternating regions of hydrogen bonded and hydrophobic bonded channels; see text.
erential twist of the carboxyl group with respect to the ammonium group is counterclockwise (Fig.6) (Lakshminarayanan et al., 1967), irrespective of whether the carboxyl group is ionized or unionized. There is probably a simple reason for this preferential twist of the carboxyl group; the intramolecular $\mathrm{C}_{\beta} \ldots \mathrm{O}(1)$ distance increases for a counterclockwise twist of the carboxyl group from the value at $\psi_{2}=0^{\circ}$, but decreases for a
clockwise twist of the carboxyl group. In DL-serine, ψ_{2} is $3 \cdot 8^{\circ}$, and the $\mathrm{C}(3) \cdots \mathrm{O}(1)$ van der Waals contact is only $2.896 \AA$; consequently, any appreciable increase in the positive ψ_{2} values will produce severe nonbonded $\mathrm{C}(3) \ldots \mathrm{O}(1)$ interactions. In L-ornithine hydrochloride, ψ_{2} is $-38 \cdot 1^{\circ}$, and the $\mathrm{C}(3) \cdots \mathrm{O}(1)$ distance ($3 \cdot 254 \AA$) is beyond the van der Waals contact distance, while the $\mathrm{C}(3) \cdots \mathrm{O}(2)$ distance $(3 \cdot 119 \AA)$
is now approaching the van der Waals distance; thus any further appreciable increase in the negative ψ_{2} value will produce unfavorable $\mathrm{C}(3) \ldots \mathrm{O}(2)$ contacts. Therefore, the preferred value of ψ_{2} is centered at about $-15 \cdot 0^{\circ}$ for the amino acids (Table 6).

Hydrogen bonding

There are five hydrogen bonds in this crystal structure; four of these are shown in Fig. 7 and the fifth is shown in Fig. 8. The only two oxygen atoms not participating in hydrogen bonds are the carbonyl oxygen atom of the carboxyl group and the ester oxygen atom of the phosphate group. DL-Serine phosphate exhibited a similar property. To date there is no known example of an intermolecular hydrogen bond involving the phosphate ester oxygen atom. However, in the amino
acid structures with a carboxylate group, both the carboxyl oxygen atoms are usually involved in hydrogen bonding, while in the amino acid derivatives with the un-ionized carboxyl group, e.g. L-serine phosphate, DL-serine phosphate, L -valine hydrochloride, L -phenylalanine hydrochloride, the carbonyl group may not necessarily be involved in hydrogen bonding as demonstrated by the former two examples. The very short hydrogen bond $\mathrm{P}=\mathrm{O} \cdots \dot{\mathrm{H}}-\mathrm{O}-\mathrm{C}-$ of $2.492 \AA$ occurs between the phosphate oxygen atom $O(4)$ and the carboxyl hydroxyl oxygen atom $\mathrm{O}(5)$ of the $0 k 0$ screw-related molecule. The shortest phosphate-phosphate hydrogen bond, $\mathrm{P}-\mathrm{O}^{-} \cdots \mathrm{H}-\mathrm{O}-\mathrm{P}, 2 \cdot 558 \AA$, involves the phosphates related by the $00 l$ screw axis.

Table 8. Torsion angles in L -serine phosphate, DL-serine and L_{s}-threonine

Bond sequence	L-serine phosphate	DL-serine	L_{s}-threonine
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(1)-\mathrm{C}(3)$	$80 \cdot 1^{\circ}$		
$\mathrm{O}(3)-\mathrm{P}-\mathrm{O}(1)-\mathrm{C}(3)$	$-45 \cdot 8$		
$\mathrm{O}(4)-\mathrm{P}-\mathrm{O}(1)-\mathrm{C}(3)$	$-161 \cdot 4$		
$\mathrm{P}-\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$153 \cdot 2$		
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-60 \cdot 9$	$-55 \cdot 8$	$-82 \cdot 6$
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$	$178 \cdot 7$	$181 \cdot 3$	$156 \cdot 1$
$\mathrm{O}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$117 \cdot 7$	$126 \cdot 7$	$95 \cdot 1$
$\mathrm{O}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$	$-2 \cdot 6$	$3 \cdot 8$	$-26 \cdot 1$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$	$-57 \cdot 1$	$-53 \cdot 1$	$-177 \cdot 4$
$\mathrm{~N}-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$	$61 \cdot 3$	$69 \cdot 2$	$-54 \cdot 8$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(4)-\mathrm{H}(1)$	$-97 \cdot 0$		

Fig. 8. View down the b axis of the unit cell showing the hydrogen bond not depicted in Fig. 7.

(1)	x	y	K	Key to bonds				
(2)	$-x$	$-\frac{1}{2}+y \quad \frac{1}{2}$		A_{1}				
(3)	$-x$	$\frac{1}{2}+y \quad \frac{1}{2}$ -						
(4)	$\frac{1}{2}-x$	$1-y-\frac{1}{2}$		A_{2}				
(5)	$-\frac{1}{2}-x$	$1-y-\frac{1}{2}$			\backslash			
(6)	$x-1$	y	z		A_{4}			
		Distances				Angles		
	$A_{2} \mathrm{H}$	$A_{3} \mathrm{H}^{*}$	$A_{2} A_{3}{ }^{*}$	$A_{1} A_{2} A_{3}$	$A_{2} \mathrm{H} A_{3}$	$\mathrm{H} A_{2} A_{3}$	$A_{2} A_{3} A_{4}$	$\mathrm{H} A_{3} A_{4}$
	$0.794 \AA$	2.043 (0.04) \AA	2.797 (0.004) \AA	$\AA \quad 112.57^{\circ}$	158.47°	15.55°	129.47°	124.34°
	$0 \cdot 690$	1.860 (0.04)	2.492 (0.003)	109.75	152.62	20.07	$131 \cdot 29$	138.29
	0.766	$1.804(0.04)$	2.558 (0.003)	116.80	168.36	$8 \cdot 18$	$113 \cdot 58$	117.04
	0.955	$2.082(0.04)$	$2.964(0.005)$	121.04	$152 \cdot 85$	11.40	$150 \cdot 53$	142.94
	$0 \cdot 833$	1.961 (0.04)	2.780 (0.004)	117.28	$167 \cdot 57$	8.73	132.85	$133 \cdot 22$

Reference molecule
Symmetry-related molecules

There was little question here that the proton was attached to phosphate oxygen atom $\mathrm{O}(4)$, although the electron density of the proton was slightly diffuse. These two short hydrogen bonds run approximately normal to each other. The remaining three hydrogen bonds involve the protonated amino group; the two shorter hydrogen bonds, $\mathrm{N}-\mathrm{H} \ldots \mathrm{O}(2), 2 \cdot 780 \AA$, and $\mathrm{N}-\mathrm{H} \cdot \mathrm{C}(3), 2.797 \AA$, are between the amino group and two different phosphate groups, and the third hydrogen bond, $\mathrm{N}-\mathrm{H} \ldots \mathrm{O}(5), 2 \cdot 964 \AA$, is between the amino group and the carboxyl hydroxyl group. It may be noted that the $-\mathrm{NH}_{3}^{+}$group of amino acids is always involved in three hydrogen bonds. L-Serine phosphate occurs as a zwitterion with the amino group protonated by a phosphate proton. Terminal amino groups of proteins may be hydrogen bonded to phosphates in a similar manner.

The phosphate group is involved in five hydrogen bonds (Fig.9); $\mathrm{O}(4)$ is involved in a donor hydrogen bond, while $\mathrm{O}(2)$ and $\mathrm{O}(3)$ are each involved in two acceptor hydrogen bonds. All of the hydrogen bonds in this structure are nonlinear (Table 9), i.e. the proton does not lie on the line joining the donor and acceptor. The $A_{2}-\mathrm{H} \cdots A_{3}$ angles range from 153 to 168°, while the $\mathrm{H}-A_{2} \cdots A_{3}$ angles vary from 8 to 20°. The largest $\mathrm{H}-A_{2} \cdots A_{3}$ angle of 20° occurs in the case of the shortest hydrogen bond.

Viewed down the a axis, the crystal structure may be described as composed of hydrogen bonded and hydrophobic 'bonded' channels running down alternate $h 00$ screw axes (Fig. 7). The hydrophobic channel is composed of the methylene protons, the carbonyl oxygen atom (which is not involved in hydrogen bonding) and the 'back end' of the phosphate hydroxyl group.

This work was supported by a research grant No. GM-14828 and a Career Development Award, GM-42412, to one of us (M.S.) from th: National Institutes of Health of the United States Pu, lic Health Service.

References

Ando, O., Ashida, T., Sasada, Y. \& Kakudo, M. (1967). Acta Cryst. 23, 172.
Bugg, C. E. \& Marsh, R. (1967). J. Mol. Biol. 25, 67.
Busing, W. R., Martin, R. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Chiba, A., Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1967). Acta Cryst. 22, 863.

Cruickshank, D. W. J. (1961). J. Chem. Soc. p. 5486.
Derissen, J. L., Endeman, H. J. \& Peerdeman, A. F. (1968). Acta Cryst. B24, 1349.
Donohue, J. \& Caron, A. (1964). Acta Cryst. 17, 1178.
Donohue, J. \& Trueblood, K. N. (1952). Acta Cryst. 5, 419.

Fries, D. C. \& Sundaralingam, M. (1969a). To be published.

Fries, D. C. \& Sundaralingam, M. (1969b). To be published.
Gurskaya, G. V. (1968). The Molecular Structure of Amino Acids, p. 81. New York: Consultants Bureau.
Harding, M. M. \& Long, H. A. (1968). Acta Cryst. B24, 1096.

Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
Ichikawa, T. \& Ittaka, Y. (1968). Acta Cryst. B24, 1488.

Iitaka, Y. (1960). Acta Cryst. 13, 35.
Iitaka, Y. (1961). Acta Cryst. 14, 1.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Jacobsen, R. A., Wunderlich, J. A. \& Lipscomb, W. N. (1961). Acta Cryst. 14, 598.

Karle, I. \& Karle, J. (1964). Acta Cryst. 17, 835.
Klug, H. P. \& Alexander, L. E. (1954). X-ray Diffraction Procedures. New York: John Wiley.
Kraut, J. (1961). Acta Cryst. 14, 1146.
Kraut, J. \& Jensen, L. H. (1963). Acta Cryst. 16, 79.
Larshminarayanan, A. V., Sasisekharan, V. \& RamaChandran, G. N. (1967). In Conformations of Biopolymers, Vol. 1. Ed. G. N. Ramachandran. New York: Academic Press.
McCallum, G. H., Robertson, J. M. \& Sim, G. A. (1959). Nature, Lond. 184, 1863.
Mallikarjunan, M. \& Rao, S. T. (1969). Acta Cryst. B25, 296.

Marsh, R. E. (1958). Acta Cryst. 11, 654.
Marsh, R. E. \& Donohue, J. (1967). Advanc. Protein Chem. 22, 235.
Oughton, B. M. \& Harrison, P. M. (1959). Acta Cryst. 12, 396.

Putkey, E. F. \& Sundaralingam, M. (1970). Acta Cryst. B26, 782.
Shoemaker, D. P., Barieau, R. E., Donohue, J. \& Lu, C.S. (1953). Acta Cryst. 6, 241.

Shoemaker, D. P., Donohue, J., Schomaker, V. \& Corey, R. B. (1950). J. Amer. Chem. Soc. 72, 2328.

Simpson, H. J. \& Marsh, R. E. (1965). Acta Cryst. 20, 550.

Fig.9. The hydrogen-bonded surroundings of the phospnate group. Numbers appearing after hyphens are the symmetry numbers of Table 9.

Stewart, R. F., Davidson, E. \& Simpson, W. (1965). J. Chem. Phys. 42, 3175.
Sundaralingam, M. (1966). Acta Cryst. 21, 495.
Sundaralingam, M. (1968). Nature, Lond. 217, 35.
Sundaralingam, M. (1969). Biopolymers, 7, 821.
Sundaralingam, M. \& Jensen, L. H. (1965a). J. Mol. Biol. 13, 914.
Sundaralingam, M. \& Jensen, L. H. (1965b). J. Mol. Biol. 13, 930.
Sundaralingam, M. \& Putkey, E. F. (1969). Unpublished results.
Vainshtein, B. K. \& Gurskaya, G. V. (1964). Dokl. Akad. Nauk USSR, 156, 312.
Wright, D. A. \& Marsh, R. E. (1962). Acta Cryst. 15, 54

Acta Cryst. (1970). B26, 800

The Refinement of the Crystal Structure of the Perylene-Tetracyanoethylene Complex

By Isao Ikemoto, Kyuya Yakushi and Haruo Kuroda
Department of Chemistry, Faculty of Science, The University of Tokyo, Tokyo, Japan

(Received 18 June 1969)

Abstract

Crystals of the $1: 1$ complex of perylene and tetracyanoethylene (TCNE) are monoclinic, space group $P 2_{1} / a$ with $a=15 \cdot 763, b=8 \cdot 234, c=7.346 \AA, \beta=96 \cdot 4^{\circ}, Z=2$. The structure was refined by the blockdiagonal least-squares method, on the basis of three-dimensional photographic data. Perylene and TCNE molecules are stacked alternately along the b-axis direction, making their molecular planes almost parallel to each other. The mean separation of the molecular planes is $3 \cdot 186 \AA$.

Introduction

There is a common feature in the π-molecular complex; the donor and acceptor molecules are alternately
stacked, plane-to-plane, along some crystal axis with relatively small separation between molecular planes. The relative orientations of donor and acceptor molecules in the crystal are various (Prout \& Wright, 1968).

[^0]: * To whom correspondence should be addressed. Present address: Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
 \dagger Present address: The Marianists, Chaminade College, 3140 Waialae Avenue, Honolulu, Hawaii 96816, U.S.A.

