Acta Cryst. (1970). B26, 790

# Molecular Structures of Amino Acids and Peptides. II. A Redetermination of the Crystal Structure of L-O-Serine Phosphate. A Very Short Phosphate–Carboxyl Hydrogen Bond

## BY M. SUNDARALINGAM\* AND E. F. PUTKEY<sup>†</sup>

Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A.

#### (Received 4 June 1969)

L-O-Serine phosphate crystallized from aqueous solution in the orthorhombic space group  $P2_12_12_1$ , with cell dimensions  $a = 7.737 \pm 0.0003$ ,  $b = 10.167 \pm 0.0003$  and  $c = 9.136 \pm 0.0004$  Å. The calculated and observed densities, assuming Z=4, are 1.718 and 1.739 g.cm<sup>-3</sup> respectively. The structure was solved by the heavy-atom technique and refined by full-matrix least squares to an R index of 0.027, using 713 reflections collected on a Picker automatic diffractometer. The estimated standard deviations in the bond distances and bond angles are P-O, 0.003; C-C, C-N, C-O, 0.005; C-H, N-H, O-H, 0.04 Å; O-P-O, 0.12°; P-O-C, 0.20°; the remaining bond angles are 0.25°. The structure includes a very short

hydrogen bond,  $P=O\cdots H-OC-2.492$  Å, between a phosphate oxygen atom and the carboxyl group. The shortest hydrogen bond,  $P-O-\cdots H-O-P$ , between phosphate groups is 2.558 Å. Three more hydrogen bonds involve the ammonium group which is protonated by one of the phosphate protons to +

yield a zwitterion, NH<sub>3</sub>CH(COOH)CH<sub>2</sub>OPO<sub>3</sub>H. The N-H···O-P hydrogen bond is 2.797 Å. The carbonyl oxygen atom and the phosphate ester oxygen atom do not participate in hydrogen bonding; the latter feature is characteristic of all known phosphate esters. Variations in bond distances and bond angles in the phosphates is attributed to conformational and hydrogen bonding differences. The molecular structures and conformations of the accurately analyzed amino acids are reviewed. It is seen that the  $C(1) (sp^2)-C(2) (sp^3)$  bond distance of amino acids is similar to that of the  $C(2) (sp^3)-C(3) (sp^3)$  bond. Also, the ammonium nitrogen atom, as a general rule, is not coplanar with the carboxyl group. The P-O bond distances and the O-P-O valence angles in the known monophosphate monoanions are tabulated.

#### Introduction

O

The recent solution of the structure of DL-serine phosphate monohydrate in our laboratory (Putkey & Sundaralingam, 1970) showed the presence of two very short hydrogen bonds involving the phosphates. A previous communication on the structure of L-serine phosphate by McCallum, Robertson & Sim (1959) showed the presence of a similar short hydrogen bond, in this case between a phosphate group and a carboxyl group. These workers did not publish the atomic coordinates. The present redetermination of the structure of L-serine phosphate was undertaken to obtain more accurate information relating to this short hydrogen bond, bond distances and bond angles.

#### Experimental

Colorless crystals were grown from an aqueous solution of L-serine phosphate obtained from Cyclo Chemical Corporation. All X-ray data were taken using a crystal of dimensions  $0.2 \times 0.2 \times 0.4$  mm, which was cut from a large rectangular prismatic crystal. Weissenberg and precession photographs showed the space group extinctions h=2n+1 for h00, k=2n+1 for 0k0, and l=2n+1 for 00l reflections, confirming the space group  $P2_12_12_1$  obtained in the earlier study (McCallum *et al.*, 1959). Precise cell constants were calculated from a least-squares refinement of the angular settings  $2\theta$ ,  $\chi$ ,  $\varphi$  of twenty reflections measured on the Picker automated diffractometer. The density was measured by the flotation method using a Westphal balance and a mixture of chloroform and bromoform. A summary of the crystal data is given in Table 1.

Cu  $K\alpha$  intensity data up to  $2\theta = 134^{\circ}$  were measured on the Picker four-angle diffractometer using a scan rate of two degrees per minute. Individual background measurements were not taken. Instead, a table of **ba**ckground as a function of  $2\theta$  was constructed by scanning at appropriate regions of the reciprocal sphere for the entire  $2\theta$  range for which data were collected. Background for each reflection was interpolated from the above table and subtracted from the total scan to obtain the net peak count. The criterion for rejecting weak reflections was essentially that of Klug & Alexander (1954). A reflection was considered observed if  $I_{corr} = n\sigma(I)$ , where  $\sigma(I) = (I_{scan} + I_{bkg})^{1/2}$ ,  $I_{corr} = I_{scan}$ 

<sup>\*</sup> To whom correspondence should be addressed. Present address: Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.

<sup>†</sup> Present address: The Marianists, Chaminade College, 3140 Waialae Avenue, Honolulu, Hawaii 96816, U.S.A.

 $-I_{bkg}$  and n=1.5. Altogether 745 reflections were scanned, and 719 were significantly above background and were utilized in the structure analysis.

#### The determination and refinement of crystal structure

The phosphorus atom was located using the conventional heavy-atom method on Harker sections of a sharpened three-dimensional Patterson synthesis. The sharpened coefficients were obtained by multiplying each  $F^2$  by  $(\sin \theta / \lambda)^2$  (Jacobsen, Wunderlich & Lipscomb, 1961). The remainder of the non-hydrogen atoms were located by means of a three-dimensional electron density synthesis phased upon the phosphorus atom position. A structure factor calculation based on the non-hydrogen atom coordinates and a uniform isotropic temperature factor of  $3.0 \text{ Å}^2$  gave an R value of 0.344, which dropped to 0.078 in three cycles of isotropic least-squares refinement. The Oak Ridge National Laboratory least-squares program ORFLS (Busing, Martin & Levy, 1962), modified for the UNIVAC 1108 machine by Dr S. T. Rao of our laboratory, was used in the refinement. A difference





electron density map computed at this stage showed unequivocally the positions of five hydrogen atoms. Location of the remaining hydrogen atoms was hindered by anisotropic effects of the heavier atoms. Two more isotropic least-squares cycles, including these five hydrogen atoms, lowered the R value to 0.066. At this stage, two anisotropic least-squares cycles on the non-hydrogen atoms reduced the R value to 0.053. Another difference map, including the contribution of the non-hydrogen atoms and the above five hydrogen atoms in the  $F_c$ , revealed the remaining three hydrogen atoms (Fig. 1). Until this point, the refinement was executed with unit weights. In subsequent least-squares cycles, a modified Hughes (1941) weighting scheme was employed. Two additional anisotropic least-squares cycles refining the positional and anisotropic temperature factors of the non-hydrogen atoms and only the positions of the hydrogen atoms gave an R value of 0.032. The hydrogen atoms were given the anisotropic thermal parameters of the atom to which they were bonded, and these were not refined. Eliminating six reflections suffering from secondary extinction effects made the final R = 0.027, and the weighted R = 0.038.

The atomic scattering factors used in this work were taken from *International Tables for X-ray Crystallography* (1962). The hydrogen atom scattering factors were from Stewart, Davidson & Simpson (1965). Table 2 is a listing of the observed and calculated structure factors. The final atomic parameters and their estimated standard deviations are given in Table 3. The principal axes of the thermal ellipsoids are presented in Table 4.

#### Discussion of the crystal structure

The bond distances and angles in L-serine phosphate are shown in Figs.2 and 3 respectively. The standard deviations in the bond lengths and angles are: P-O, 0.003; C-C, C-N, C-O, 0.005; C-H, N-H, O-H, 0.04 Å; O-P-O, 0.12; P-O-C, 0.20; C-C-C, C-C-O,  $0.25^{\circ}$ ; and for angles involving hydrogen atoms,  $1.8^{\circ}$ . The bond distances involving the non-hydrogen atoms from the earlier work (the standard deviations were not published) are compared with the present results in Table 5. The agreement in the two analyses is generally

| Crustel surface    | This work                      | McCallum et al. (1959)   |
|--------------------|--------------------------------|--------------------------|
| Crystal system     | Ormornomole                    |                          |
| Space group        | $P2_{1}2_{1}2_{1}$             |                          |
| a                  | 7·737 ± 0·0003 Å               | $7.79 \pm 0.01$ Å        |
| b                  | $10.167 \pm 0.0003$ Å          | 10·24 ± 0·04 Å           |
| c                  | 9·136 + 0·0004 Å               | 9·09 ± 0·02 Å            |
| V                  | 718·5 Å <sup>3</sup>           | 725·1 ų                  |
| Z                  | 4                              | 4                        |
| $D_m$              | 1.739 g.cm <sup>-3</sup>       | 1·707 g.cm <sup>-3</sup> |
| $D_x$              | 1.718 g.cm <sup>-3</sup>       | 1.692 g.cm <sup>-3</sup> |
| Crystal dimensions | $0.2 \times 0.2 \times 0.4$ mm |                          |
| -                  |                                |                          |

Table 1. Crystal data for L-serine phosphate ( $\lambda_{Cu K\alpha} = 1.5418$  Å)

Table 2. Calculated and observed structure amplitudes  $\times 10$ 

The following six reflections were suspected of suffering from large secondary extinction and therefore were not used in the final refinement cycles. 200 2602 2830; 020 2646 2829; 130 1628 1741; 211 1427 1523; 002 2545 3018; 102 1883 2025.

| 0,4,                                                                                                                                       | •                                                          | 0.4.8                                                                                                           | 1.8.                                                                                                  | 5                                                           | 5+×+5                                                              |                                                                                                                                           | 189                                                    | 203                                           | 2                | 55                                                         | 75                                                         |                            |                                                             |                                                             | 6                | 426                                                        | 925                                                        |                                      | 6+K+2                                                  |                                                      |             | 7+*+3                                                 |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------|-------------------------------------------------------|----------------------------------------------|
| <ul> <li>1075</li> <li>321</li> <li>164</li> <li>10</li> <li>268</li> <li>12</li> <li>187</li> <li>0rk,</li> <li>1</li> <li>481</li> </ul> | 1061<br>314<br>173<br>281<br>191<br>1<br>501               | 0 1019 1019<br>1 485 880<br>2 669 656<br>3 324 321<br>4 137 132<br>5 100 102<br>6 70 53<br>7 77 64<br>8 123 115 | 0 198<br>1 482<br>2 755<br>3 591<br>4 539<br>5 289<br>6 121<br>7 471<br>8 101                         | 204<br>457<br>750<br>589<br>523<br>282<br>128<br>466<br>107 | 530<br>275<br>311<br>334<br>305<br>729<br>475<br>475<br>673<br>354 | 527 6<br>260<br>293<br>341<br>301 0<br>732 1<br>476 2<br>678 3<br>354                                                                     | 80<br>2+K+10<br>88<br>151<br>79<br>133                 | 65<br>65<br>163<br>82<br>134                  | 56789            | 254<br>89<br>361<br>198<br>258<br>116<br>3.K.7             | 248<br>47<br>366<br>185<br>262<br>100                      | 012345678                  | 296<br>144<br>251<br>282<br>683<br>299<br>819<br>215<br>404 | 290<br>148<br>254<br>278<br>689<br>292<br>831<br>219<br>419 | 0123             | 277<br>239<br>5+X+3<br>177<br>641<br>130<br>648            | 100<br>221<br>100<br>640<br>134<br>654                     | 0<br>1<br>2<br>4<br>5<br>6<br>7<br>8 | 280<br>784<br>340<br>138<br>395<br>101<br>108          | 289<br>782<br>340<br>132<br>389<br>99<br>103         | 234567      | 60<br>214<br>79<br>217<br>198<br>67<br>7,K,4          | 55<br>212<br>96<br>217<br>212<br>69          |
| 2 1057<br>3 55<br>5 722<br>5 383<br>6 86<br>7 201<br>8 569<br>9 368<br>10 433<br>11 15                                                     | 1077<br>72<br>718<br>402<br>75<br>198<br>587<br>360<br>434 | 0-K-9<br>1 (155 149<br>3 81 76<br>8 63 62<br>5 205 185<br>6 200 180                                             | 9 328<br>10 284<br>1+X+<br>0 122<br>1 657<br>2 443<br>3 384                                           | 325<br>274 1<br>6<br>120<br>671<br>436<br>387               | 205<br>270<br>184<br>2+K+3<br>592<br>736<br>280                    | 209<br>264<br>193 1<br>2<br>3<br>612 5<br>742 6<br>238 7                                                                                  | 3+X+0<br>839<br>1056<br>174<br>347<br>87<br>519<br>144 | 810<br>1051<br>1A7<br>337<br>74<br>523<br>127 | 01234678         | 254<br>162<br>434<br>122<br>506<br>225<br>220<br>30        | 255<br>165<br>437<br>123<br>520<br>224<br>218<br>23        | 9                          | 133<br>4+K+5<br>188<br>256<br>261<br>498<br>406             | 136<br>194<br>259<br>286<br>485<br>421                      | 456789           | 284<br>176<br>265<br>80<br>204<br>184<br>57574             | 278<br>187<br>268<br>85<br>200<br>123                      | 0123456                              | 6+K+3<br>2+0<br>393<br>150<br>511<br>381<br>256<br>315 | 247<br>395<br>152<br>513<br>386<br>250<br>312        | 0123456     | 406<br>190<br>377<br>118<br>237<br>53<br>174<br>7.K.5 | 402<br>194<br>375<br>124<br>245<br>50<br>159 |
| 0,x,<br>1 599<br>2 938<br>3 569<br>4 351<br>5 706<br>6 138                                                                                 | 2<br>628<br>819<br>596<br>301<br>708                       | 0 336 325<br>1 226 227<br>2 171 159<br>3 268 278<br>5 31 20<br>1+K+0                                            | 5 386<br>6 154<br>7 376<br>8 64<br>9 92<br>1+K+                                                       | 390<br>142<br>368<br>63<br>89<br>7 1<br>1                   | 289<br>289<br>253<br>263<br>580<br>156<br>535<br>243<br>138        | 304         9           239         10           262         11           578         141           548         0           130         1 | 325<br>221<br>447<br>37<br>3+K+1<br>835<br>595         | 226<br>447<br>24<br>845<br>607                | 1239567          | 277<br>94<br>57<br>208<br>111<br>240<br>140                | 287<br>88<br>63<br>199<br>105<br>236<br>126                | 56789                      | 265<br>70<br>106<br>201<br>4.X.0<br>152                     | 424<br>279<br>64<br>99<br>192                               | 012345678        | 216<br>323<br>436<br>289<br>444<br>227<br>194              | 59<br>213<br>324<br>423<br>292<br>456<br>232<br>210<br>50  | 7<br>8<br>0<br>1<br>2<br>3           | 239<br>199<br>6+K+4<br>152<br>566<br>115<br>133        | 247<br>193<br>164<br>576<br>117<br>147               | 1 2 3 4 5   | 141<br>196<br>218<br>78<br>181<br>7+K+K               | 144<br>187<br>211<br>69<br>176               |
| 7 144<br>8 222<br>9 276<br>10 57<br>D+K+                                                                                                   | 126<br>224<br>275<br>37                                    | 1 586 511<br>2 710 751<br>4 1065 1084<br>5 859 853<br>6 164 166<br>7 153 151<br>8 143 151<br>8 143 151          | 1 119<br>2 360<br>3 58<br>4 209<br>5 243<br>6 87<br>7 375                                             | 106<br>353<br>66<br>208<br>245<br>78<br>383                 | 2, K, 4<br>380<br>256<br>299<br>412<br>401                         | 377 5<br>260 6<br>296 7<br>403 8<br>418 9                                                                                                 | 762<br>932<br>552 ,<br>358<br>185<br>227<br>464        | 768<br>940<br>560<br>369<br>195<br>223<br>471 | 0 1 2 3 4        | 3+K+9<br>101<br>279<br>85<br>206<br>146                    | 100<br>300<br>92<br>217<br>149                             | 3<br>4<br>5<br>6<br>7<br>8 | 183<br>136<br>301<br>175<br>205<br>149                      | 182<br>149<br>297<br>167<br>214<br>142                      | 1234             | 5+x+5<br>657<br>365<br>460<br>385                          | 664<br>367<br>463<br>389                                   | 567                                  | 135<br>314<br>94<br>6+X+5<br>244                       | 135<br>322<br>88<br>249                              | 1<br>2<br>3 | 333<br>238<br>203<br>A+×+0<br>362                     | 329<br>241<br>206                            |
| 1 963<br>2 559<br>3 1019<br>5 268<br>5 789<br>6 132<br>7 1135<br>8 171                                                                     | 956<br>583<br>1016<br>290<br>757<br>139<br>1196<br>157     | 9 299 305<br>10 149 148<br>11 298 316<br>1+K+1<br>0 464 443<br>1 283 280                                        | 8 116<br>9 323<br>. 1***<br>0 565<br>1 331<br>2 364                                                   | 8<br>554<br>345<br>361                                      | 691<br>573<br>767<br>563<br>240<br>279<br>215,5                    | 678 10<br>577 11<br>798<br>566<br>247<br>274 0<br>1<br>274 1                                                                              | 59<br>226<br>3+×+2<br>919<br>752<br>336                | 99<br>236<br>990<br>759<br>291                | 5<br>0<br>1<br>2 | 169<br>3+K+10<br>128<br>97<br>115                          | 163<br>133<br>91<br>115                                    | 123456                     | 4+K+7<br>683<br>323<br>510<br>185<br>207                    | 699<br>337<br>511<br>180<br>205                             | 5678             | 150<br>164<br>87<br>43<br>5/K+6                            | 135<br>173<br>79<br>86                                     | 134567                               | 288<br>365<br>277<br>164<br>320<br>96                  | 296<br>369<br>281<br>167<br>324<br>100               | 1245        | 133<br>295<br>281<br>43<br>8+K+1                      | 136<br>287<br>281<br>81                      |
| 9 652<br>10 155<br>11 87<br>0:x,<br>0 303                                                                                                  | 644<br>145<br>85<br>4<br>297                               | 2 709 736<br>3 769 778<br>4 220 235<br>5 210 224<br>6 142 146<br>7 370 369<br>8 158 153                         | 3 316<br>4 288<br>5 223<br>6 126<br>7 196<br>1 * K *                                                  | 326<br>268<br>213<br>121<br>185<br>9                        | 687<br>43<br>440<br>427<br>312<br>386                              | 3<br>706 4<br>56 5<br>453 6<br>427 7<br>310 R<br>388 9                                                                                    | 213<br>707<br>472<br>519<br>149<br>352<br>207          | 208<br>715<br>469<br>529<br>137<br>354<br>206 | 01245            | 4+K+0<br>636<br>162<br>290<br>426<br>99                    | 627<br>151<br>275<br>432<br>103                            | 0                          | 91<br>50<br>261                                             | 106<br>92<br>106<br>87<br>259                               | 1234567          | 223<br>246<br>285<br>173<br>230<br>92<br>366<br>51         | 223<br>249<br>288<br>166<br>233<br>95<br>370<br>57         | 012355                               | 318<br>258<br>308<br>117<br>282<br>213                 | 314<br>264<br>307<br>115<br>283<br>222               | 2345        | 134<br>167<br>149<br>54<br>197<br>8/X+2               | 133<br>159<br>148<br>60<br>176               |
| 2 175<br>3 176<br>4 491<br>5 370<br>6 164<br>7 470<br>8 510                                                                                | 162<br>155<br>480<br>381<br>167<br>468<br>491              | 11 32% 347<br>1. 32% 347<br>1. 4.2<br>1 197 249<br>2 1001 1008<br>5 491 499                                     | 0 60<br>1 95<br>2 396<br>3 232<br>4 142<br>5 239<br>6 62                                              | 64<br>102<br>376<br>223<br>124<br>234<br>50                 | 235<br>465<br>223<br>212<br>151<br>2,K.6                           | 235 10<br>489 11<br>223<br>225<br>147<br>0<br>1                                                                                           | 317<br>288<br>3+K+3<br>500<br>343<br>220               | 330<br>297<br>494<br>342                      | 6<br>7<br>8<br>9 | 335<br>169<br>114<br>233<br>4+K+1                          | 331<br>167<br>103<br>245                                   | 3 6                        | 168<br>138<br>154<br>4.K.9<br>156                           | 165<br>131<br>143                                           | 0123             | 5+x+7<br>33a<br>205<br>416<br>293                          | 351<br>208<br>416<br>288                                   | 5                                    | 169<br>6+x+7<br>144<br>197<br>94                       | 161<br>152<br>201                                    | 012345      | 157<br>274<br>155<br>157<br>173<br>164                | 159<br>283<br>186<br>163<br>176<br>153       |
| 9 87<br>10 89<br>11 81<br>0.x.<br>1 223                                                                                                    | 88<br>84<br>64<br>225                                      | 4 1007 1029<br>5 570 557<br>6 448 458<br>7 354 354<br>8 551 548<br>9 141 153<br>10 143 138                      | 0 345<br>1 72<br>2 207<br>3 159                                                                       | 350<br>74<br>210<br>143                                     | 457<br>279<br>414<br>123<br>347<br>357<br>177                      | 443 3<br>281 4<br>424 5<br>131 6<br>350 7<br>357 8<br>181 9                                                                               | 880<br>207<br>601<br>237<br>357<br>241<br>213          | 870<br>203<br>593<br>228<br>351<br>226<br>204 | 1234567          | 231<br>479<br>815<br>580<br>308<br>153<br>123              | 255<br>1244<br>479<br>812<br>565<br>291<br>151<br>124      | 23                         | 232<br>317<br>163<br>322<br>5+K+0<br>548                    | 237<br>329<br>167<br>328                                    | *<br>5<br>6      | 92<br>92<br>111<br>5-X-8<br>115<br>86                      | 335<br>94<br>99<br>108<br>92                               | 3<br>4<br>0<br>1                     | 236<br>114<br>67K.A<br>236<br>197                      | 240<br>113<br>242<br>196                             | 07~n        | A+K+3<br>180<br>12A<br>69<br>205                      | 184<br>124<br>65<br>204                      |
| 2 803<br>3 253<br>4 501<br>5 595<br>6 167<br>7 748<br>8 338<br>9 190                                                                       | 794<br>236<br>501<br>596<br>157<br>749<br>329              | 11 138 147<br>1+K+3<br>0 250 259<br>1 477 513<br>2 1341 1335<br>3 643 687                                       | <ul> <li>1 50</li> <li>2 x x</li> <li>1 393</li> <li>2 1149</li> <li>3 1066</li> <li>3 467</li> </ul> | 163<br>0<br>391<br>1068<br>1076                             | 385<br>204<br>202<br>2,x,7<br>610                                  | 396 10<br>208<br>191<br>612 2<br>208                                                                                                      | 67<br>3+K+4<br>308<br>233<br>243                       | 53<br>321<br>246<br>238                       | 8<br>9<br>10     | 290<br>90<br>93<br>****?<br>245                            | 264<br>100<br>79<br>222                                    | 2345678                    | 394<br>221<br>327<br>130<br>693<br>209<br>333               | 390<br>222<br>338<br>128<br>655<br>208<br>326               | 234              | 50<br>115<br>182<br>5+K+9<br>204                           | 57<br>109<br>187<br>212                                    | 12545                                | 7+K+0<br>550<br>172<br>235<br>174<br>57                | 54R<br>177<br>239<br>172<br>60                       | 0 12 3      | 93<br>122<br>66<br>199<br>8.K.5                       | 92<br>138<br>63<br>194                       |
| 10 346<br>0+K+<br>0 1358<br>1 592<br>2 876                                                                                                 | 339<br>4<br>1371 -<br>599<br>857                           | * 1159 1174<br>5 5*6 550<br>6 383 372<br>7 233 225<br>8 3*1 323<br>9 72 72<br>10 298 300                        | 5 218<br>6 300<br>7 471<br>8 100<br>9 255<br>10 227<br>11 315                                         | 213<br>282<br>470<br>92<br>256<br>233<br>317                | 512<br>118<br>227<br>122<br>125<br>211                             | 509 4<br>136 5<br>22n 6<br>113 7<br>120 8<br>200 9<br>10                                                                                  | 290<br>670<br>353<br>301<br>114<br>247<br>58           | 281<br>662<br>354<br>282<br>104<br>245<br>55  | 2345678          | 215<br>414<br>215<br>418<br>333<br>749<br>269<br>330       | 500<br>223<br>414<br>325<br>766<br>268<br>328              | 10<br>0<br>1<br>2          | 240<br>257<br>5.K.)<br>520<br>462<br>713                    | 248<br>253<br>500<br>455<br>714                             | 01245            | 6+K+0<br>593<br>191<br>451<br>486<br>182                   | 591<br>189<br>440<br>505                                   | 6<br>7<br>1                          | 156<br>203<br>7+K+1<br>56<br>63<br>235                 | 15A<br>196<br>57<br>76<br>239                        | 1           | 208<br>65<br>9.K.O<br>319                             | 210<br>58<br>315                             |
| 3 64<br>4 166<br>5 42<br>6 57<br>10 86<br>0, K,                                                                                            | 72<br>165<br>25<br>41<br>80                                | 11 44 31<br>1××+4<br>0 144 147<br>1 316 332<br>2 418 436<br>3 731 ***                                           | 2×X+<br>0 1026<br>2 800<br>3 744<br>4 717                                                             | 1<br>103<br>801<br>727<br>720                               | 2+K+8<br>328<br>507<br>309<br>99<br>224                            | 330<br>514 0<br>314 1<br>98 2<br>227 3                                                                                                    | 3+X+5<br>219<br>426<br>620                             | 50<br>230<br>632<br>629                       | 9<br>10          | 130<br>129<br>4.K.3<br>168<br>324                          | 141<br>119<br>179<br>322                                   | 3156789                    | 680<br>428<br>448<br>159<br>111<br>163<br>83                | 673<br>444<br>163<br>122<br>154<br>75                       | 6<br>8<br>9<br>0 | 294<br>187<br>95<br>6+K+1<br>49                            | 296<br>182<br>90                                           | 567                                  | 72<br>270<br>110<br>268<br>7.x.2                       | 74<br>268<br>112<br>267                              | 0           | 9.K.1<br>107<br>171<br>9.K.2                          | 98<br>158                                    |
| 1 275<br>2 452<br>3 313<br>5 170<br>6 119<br>7 75<br>8 284<br>9 109                                                                        | 285<br>448<br>301<br>173<br>129<br>58<br>272<br>104        | 5 4 452 450<br>5 850 848<br>6 543 541<br>7 201 190<br>8 442 444<br>9 121 125<br>10 44 45<br>11 46 22            | 6 45<br>7 318<br>8 392<br>9 406<br>10 263<br>11 181                                                   | 29<br>317<br>402<br>421<br>278<br>187                       | 226<br>2+K+9<br>246<br>218<br>325<br>69                            | 125 4<br>101 5<br>219 6<br>7<br>235<br>212<br>330<br>70 1                                                                                 | 428<br>387<br>249<br>234<br>110<br>197<br>3.K.6<br>428 | 433<br>373<br>248<br>234<br>107<br>190        | 2345678910       | 341<br>459<br>695<br>171<br>438<br>147<br>137<br>93<br>166 | 330<br>472<br>690<br>168<br>449<br>140<br>155<br>96<br>159 | 0<br>1<br>2<br>3<br>5      | 133<br>5××+2<br>15*<br>112<br>3*1<br>312<br>592<br>328      | 128<br>139<br>119<br>334<br>307<br>604<br>332               | 123 #56789       | 244<br>383<br>551<br>265<br>194<br>335<br>100<br>281<br>76 | 240<br>371<br>535<br>265<br>194<br>332<br>106<br>278<br>68 | 01234567                             | 369<br>145<br>382<br>163<br>343<br>115<br>160<br>170   | 357<br>140<br>377<br>166<br>354<br>122<br>166<br>165 | o           | 361                                                   | 352                                          |

Table 3. Final positional coordinates and anisotropic temperature factors for L-serine phosphate\*

Standard deviations are shown in parentheses. All non-hydrogen parameters are  $\times 10^5$ ; all hydrogen parameters are  $\times 10^4$ .

|              | x/a          | y/b        | z/c        | $\beta_{11}$ | B22       | B33 .     | B12       | <i>B</i> 13 | B23      |
|--------------|--------------|------------|------------|--------------|-----------|-----------|-----------|-------------|----------|
| Р            | 18373 (10)   | 47330 (7)  | 17671 (9)  | 816 (13)     | 405 (7)   | 564 (9)   | 33 (9)    | 5 (10)      | 11 (7)   |
| O(1)         | -931(30)     | 42231 (26) | 19560 (26) | 898 (40)     | 1050 (29) | 734 (30)  | -60(29)   | 20 (31)     | -26(62)  |
| O(2)         | 30099 (31)   | 35744 (21) | 16406 (29) | 998 (39)     | 401 (20)  | 126 (35)  | 58 (25)   | -89(37)     | -19(24)  |
| O(3)         | 22563 (33)   | 56539 (21) | 29991 (25) | 1584 (49)    | 490 (21)  | 716 (29)  | -81(27)   | -32(32)     | -59(20)  |
| <b>O</b> (4) | 17093 (42)   | 55131 (26) | 3206 (27)  | 2087 (58)    | 735 (27)  | 671 (30)  | -418 (39) | 290 (39)    | 102 (22) |
| O(5)         | -24151 (42)  | 62348 (26) | 39977 (30) | 2125 (65)    | 464 (22)  | 994 (33)  | 134 (33)  | -274(41)    | 10 (23)  |
| O(6)         | - 37993 (41) | 58137 (25) | 19025 (35) | 2201 (61)    | 609 (24)  | 1395 (43) | 132 (33)  | - 703 (50)  | 11 (30)  |
| <b>C</b> (1) | - 30383 (45) | 54688 (32) | 29889 (39) | 987 (54)     | 514 (30)  | 929 (44)  | 84 (37)   | 41 (47)     | 5 (33)   |
| C(2)         | - 26658 (44) | 40147 (31) | 32952 (48) | 935 (58)     | 511 (31)  | 954 (46)  | - 48 (33) | -138(52)    | 31 (36)  |
| C(3)         | -7301 (45)   | 37788 (37) | 33433 (48) | 972 (57)     | 668 (34)  | 953 (46)  | 52 (44)   | -26(57)     | 188 (40) |
| Ν            | - 34642 (43) | 32453 (31) | 21021 (41) | 965 (52)     | 458 (26)  | 1202 (47) | 50 (32)   | -19 (46)    | 19 (29)  |
| H(1)         | 2005 (54)    | 5073 (38)  | -312 (24)  |              |           |           |           |             |          |
| H(2)         | - 466 (59)   | 2779 (43)  | 3554 (47)  |              |           |           |           |             |          |
| H(3)         | -125 (53)    | 4534 (39)  | 4181 (41)  |              |           |           |           |             |          |
| H(4)         | - 3186 (61)  | 3768 (40)  | 4145 (46)  |              |           |           |           |             |          |
| H(5)         | - 2869 (60)  | 6806 (39)  | 3864 (41)  |              |           |           |           |             |          |
| H(6)         | -2901 (52)   | 3584 (44)  | 1252 (42)  |              |           |           |           |             |          |
| H(7)         | -4539 (58)   | 3299 (38)  | 2092 (45)  |              |           |           |           |             |          |
| H(8)         | - 3271 (50)  | 2493 (41)  | 2271 (39)  |              |           |           |           |             |          |

\* Anisotropic thermal parameters are in the form exp  $\left[-(\beta_{11}h^2+\beta_{22}k^2+\beta_{33}l^2+2hk\beta_{12}+2hl\beta_{13}+2kl\beta_{23})\right]$ .

## Table 4. Description of the thermal ellipsoids in L-serine phosphate

 $u_i$  is the root-mean-square displacement corresponding to the *i*th axis of the ellipsoid.  $C_{ta}$ ,  $C_{tb}$  and  $C_{tc}$  are the direction cosines of the *i*th axis with respect to the crystal axes a, b, c.

|        | Axis i | Ui    | $C_{ia}$ | $C_{ib}$ | $C_{ic}$ |
|--------|--------|-------|----------|----------|----------|
| р      | 1      | 0.144 | 0.3018   | -0.9435  | 0.1366   |
| •      | 2      | 0.154 | 0.2551   | -0.0581  | -0.9652  |
|        | 3      | 0.159 | -0.9186  | -0.3261  | -0.2232  |
| O(1)   | 1      | 0.164 | -0.9946  | -0.0910  | -0.0488  |
| 0(1)   | 2      | 0.175 | 0.0591   | -0.1140  | -0.9917  |
|        | 3      | 0.236 | 0.0847   | -0.9893  | 0.1188   |
| O(2)   | 1      | 0.143 | 0.2268   | -0.9739  | -0.0020  |
| - (-   | 2      | 0.174 | -0.9643  | -0.2239  | -0.1415  |
|        | 3      | 0.232 | 0.1368   | 0.0365   | - 0.9899 |
| O(3)   | 1      | 0.155 | -0.1397  | -0.8992  | -0.4146  |
| - (- / | 2      | 0.178 | 0.0121   | 0.4164   | - 0.9089 |
|        | 3      | 0.220 | -0.9900  | 0.1341   | 0.0428   |
| O(4)   | 1      | 0.160 | -0.504   | -0.0356  | 0.9675   |
|        | 2      | 0.174 | -0.4284  | 0.9002   | -0.0778  |
|        | 3      | 0.273 | 0.8682   | 0.4340   | 0.2407   |
| O(5)   | 1      | 0.153 | 0.1238   | -0.9823  | 0.1074   |
| - (- ) | 2      | 0.197 | -0.3243  | -0.1529  | -0.9335  |
|        | 3      | 0.262 | -0.9334  | -0.1087  | 0.3420   |
| O(6)   | 1      | 0.172 | -0.3340  | 0.8922   | -0.3039  |
| • • •  | 2      | 0.198 | 0.5268   | 0.4469   | 0.7002   |
|        | 3      | 0.298 | -0.7605  | -0.0646  | 0.6461   |
| C(1)   | 1      | 0.157 | -0.5487  | 0.8350   | 0.0416   |
| . ,    | 2      | 0 178 | 0.8178   | 0.5464   | -0.1806  |
|        | 3      | 0.199 | 0.1735   | 0.0621   | 0.9827   |
| C(2)   | 1      | 0.156 | 0.6682   | 0.6928   | -0.2711  |
|        | 2      | 0.170 | -0.6657  | 0.7195   | 0.1978   |
|        | 3      | 0.202 | 0.3321   | 0.0483   | 0.9420   |
| C(3)   | 1      | 0.163 | -0.6190  | 0.6389   | -0.4566  |
| . ,    | 2      | 0.177 | 0.7849   | 0.4824   | -0.3890  |
|        | 3      | 0.212 | 0.0283   | 0.5992   | 0.8001   |
| Ν      | 1      | 0.123 | 0.3210   | -0.9462  | 0.0393   |
|        | 2      | 0.173 | -0.9466  | -0.3219  | -0.0168  |
|        | 3      | 0.226 | 0.0285   | -0.0318  | - 0.9991 |



Fig. 2. Bond distances in L-serine phosphate.

good, except for the bond distances C(1)-O(5), C(3)-O(1) and P-O(2).

 Table 5. Bond distances involving non-hydrogen atoms

 in L-serine phosphate

|             | This work | McCallum<br>et al. (1959) |
|-------------|-----------|---------------------------|
| P —O(1)     | 1.590 (3) | 1.608                     |
| P = -O(2)   | 1.491 (2) | 1.517                     |
| P = -O(3)   | 1.500 (2) | 1.497                     |
| PO(4)       | 1.544 (3) | 1.560                     |
| O(1) - C(3) | 1.433 (5) | 1.466                     |
| C(3) - C(2) | 1.517 (5) | 1.526                     |
| C(2) - N    | 1.477 (5) | 1.468                     |
| C(2) - C(1) | 1.532 (5) | 1.541                     |
| C(1) - O(5) | 1.299 (4) | 1.321                     |
| C(1)-O(6)   | 1.206(5)  | 1.201                     |

The carboxyl C(1)–C(2) bond distance of 1.532 Å is significantly longer (about  $6\sigma$ ) than the value of 1.50 Å normally associated with a  $Csp^2-Csp^3$  single bond and is slightly longer than the C(2)–C(3) bond distance. The remaining bond distances in L-serine phosphate are close to the normal ones. Data for the C(1)–C(2) and C(2)–C(3) bond distances from the more accurately analyzed ( $\sigma$  < 0.015 Å) amino acid structures are presented in Table 6. In general the C(1)–C(2) ( $sp^2-sp^3$ ) bond distance is comparable with the

| Å      |
|--------|
| 15     |
| 0      |
| 2      |
| thai   |
| ess    |
| es l   |
| anc    |
| iste   |
| l d    |
| ona    |
| q u    |
| S İ    |
| on     |
| ati    |
| evi    |
| l d    |
| ara    |
| $nd_l$ |
| tai    |
| hs     |
| vit    |
| S      |
| cid    |
| a c    |
| inc    |
| m      |
| se c   |
| nos    |
| J.     |
| ŝ      |
| ure    |
| at     |
| l fe   |
| ca     |
| im     |
| she    |
| 60(    |
| ter    |
| S      |
| 6.     |
| ble    |
| [al    |
| ۲. T   |

| Reference                            | Simpson & Marsh (1966) | Karle & Karle (1964)          | Derissen, Endeman & Peerde- | Indu (1200)<br>Ichibawa & Titaba (1020) | 101111/14/14 W 1114/4 (1700) | Harding & I ang (1968) | Oughton & Harrison (1959) | March (1958) | litaka (1960)     | litaka (1961) | Donohue & Caron (1964)              | Donohue & Truehlood (1952) | Wright & Marsh (1962)           | Chiba. et al. (1967) | Vainshtein & Gurskaya (1964) | Gurskaya (1968) | Shoemaker, Baricau, Donohue | & Lu (1953)           | Futkey & Sundaralingam (1970) | This work            | Shoemaker, Donohue, Scho- | maker & Corey (1950) | Fries & Sundaralingam (1969 <i>a</i> ) | Ando <i>et al.</i> (1967)  | Mallikarjunan & Rao (1969) | 04 Å.                          |                |
|--------------------------------------|------------------------|-------------------------------|-----------------------------|-----------------------------------------|------------------------------|------------------------|---------------------------|--------------|-------------------|---------------|-------------------------------------|----------------------------|---------------------------------|----------------------|------------------------------|-----------------|-----------------------------|-----------------------|-------------------------------|----------------------|---------------------------|----------------------|----------------------------------------|----------------------------|----------------------------|--------------------------------|----------------|
| C(3)···0(2)                          | 3-326                  | 3.384                         | 3-095                       | 3.785                                   | 3.776                        | 3.474                  | 3.419                     |              | [                 | I             | 3-527                               | 3-444                      | 3-301                           | 3.119                | 3-551                        |                 | 3-990                       | 3.235                 | ccc.c                         | 3.413                | 3-276                     |                      | 3-335                                  | 3.456                      | 3-326                      | (3), 1•526±0•00                |                |
| C(3)0(1)                             | 3-079                  | 2.987                         | 3.191                       | 3-108                                   | 3-240                        | 2.940                  | $\frac{1}{2}.999$         | 1            |                   | I             | 2:919                               | 3-005                      | 3-043                           | 3.254                | 2.915                        |                 | 2.896                       | 7.020                 | 666.7                         | 2-880                | 3.170                     |                      | 3-028                                  | 3-042                      | 3.167                      | <b>Å</b> and C(2)-C(           |                |
| N···0(2)                             | 2.682                  | 2.708                         | 2·737                       | 2.667                                   | 2.726                        | 2.654                  | 2-623                     | 2.690        | 2.700             | 2-687         | 2.668                               | 2.665                      | 2.661                           | 2-774                | 2.655                        |                 | 2.630                       | 0170                  | 741-7                         | 2.631                | 2.672                     |                      | 2-685                                  | 2.640                      | 2.671                      | $1.527 \pm 0.003$ Å            |                |
| Ψ2                                   | 340-7                  | 349-3                         | 322·2                       | 339.4                                   | 328-8                        | 357-0                  | 342.4                     | 340-9        | 332-7             | 345-0         | 0.4                                 | 356-9                      | 340-1                           | 321-9                | 358-9                        |                 | 3.8                         | 3.11.5                |                               | 357-4                | 333-9                     |                      | 341.5                                  | 348-8                      | 335-8                      | :e: C(1)-C(2),                 | 411011.        |
| Ψ1                                   | 161-5                  | 167-9                         | 144-8                       | 162-5                                   | 150-9                        | 176-4                  | 168-3                     | 198-3        | 156-3             | 168-3         | 179-5                               | 178-0                      | 162.1                           | 144-2                | 177-5                        |                 | 181-3                       | 164-7                 | 1 101                         | 178-8                | 156-1                     |                      | 164-6                                  | 170-2                      | 156-0                      | d distances ar                 | onized.        |
| $C(2)-C(3)^{*}$<br>$(sp^{3}-sp^{3})$ | 1.525                  | 1.542                         | 1.518                       | 1-564                                   | 1.564                        | 1.51                   | 1.509                     | I            | 1                 | ļ             | 1.527                               | 1-532                      | 1-524                           | 1.529                | 1.550                        |                 | 1.513                       | 1.518                 |                               | 1.518                | 1.542                     |                      | 86C·I                                  | 1.557                      | 1.541                      | l average bon<br>ordinates are | ups are not ic |
| $C(1)-C(2)^{*}$<br>$(sp^{2-sp^{3}})$ | 1.525                  | 1.547                         | 1-343                       | 1.512                                   | 1.509                        | 1.51                   | 1-543                     | 1.523        | 1-521             | 1-527         | 1-530                               | 1.516                      | 1.529                           | 1.541                | 1-505                        |                 | 82C·I                       | 1.522                 |                               | 1.532                | 1.517                     | 1 670                | 07C.I                                  | 1.509                      | 1.527                      | * The weighted                 | Carboxyl gro   |
| б                                    | 0.004                  | 0.01                          | 0.004                       | A 0.011                                 | B 0.009                      | 0-012                  | 0-015                     | 0-005        | 0.015             | 0-011         | 0-011                               | 600-0                      | 0-004                           | 0.006                | 0-015                        |                 | 600-0                       | 0-004                 | •                             | 0-005                | 0-007                     | 0.005                | con-0                                  | 600-0                      | 0-007                      | * *                            | - +-+-         |
|                                      | L-Alanine              | L-Arginine.2H <sub>2</sub> O7 | L-Aspartic acid             | DL-&-n-Butyric acid                     |                              | L-Cysteine             | L-Cystine                 | Glycine      | <i>b</i> -Glycine | y-Glycine     | L-Histidine. HCI. 2H <sub>2</sub> O | Hydroxy-L-proline          | L-Lysine. HCI.2H <sub>2</sub> O | L-Urnithine. HCI     | t-Phenylalanine. HCl*        | Contract of     |                             | DL-O-Serine phosphate | monohydrate                   | L-O-Serine phosphate | L-1 hreonne               | L_O_Tyrosine         | sulfate-K. 2H <sub>2</sub> O           | L-Valine. HCl <sup>‡</sup> | L-Valine                   |                                |                |

,



Fig. 3. Bond angles in L-serine phosphate. The bond angles not shown in the Figure are: O(1)PO(2),  $108\cdot8$ ; O(3)PO(4),  $109\cdot6$ ; C(1)C(2)C(3),  $110\cdot1$ ; H(4)C(2)N,  $111\cdot6$ ; C(2)C(3)H(2),  $110\cdot4$ ; H(3)C(3)O(1),  $103\cdot4$ ; C(2)NH(6),  $107\cdot4$ ; and H(7)NH(8),  $115\cdot6^{\circ}$ .



Fig.4. Weighted average bond distances and angles in the amino acid residues with an un-ionized carboxyl group.

C(2)-C(3)  $(sp^3-sp^3)$  bond distance. We attribute the lengthening of the C(1)-C(2) bond distance from the normal  $sp^2-sp^3$  value to the presence of the  $\alpha$ -amino substituent, which is syn to the carbonyl group, thus providing nonbonded interactions between the carbonyl group and the ammonium group (see below). A similar lengthening of the carboxyl C-C bond is not observed in the normal carboxylic acids.

The weighted average bond distances and angles for the amino acid residues with an un-ionized carboxyl group are shown in Fig.4. These values may be compared with those of the ionized amino acids reported recently by Marsh & Donohue (1967). Apart from the differences in the P–O bond distances, the agreement between the bond distances in L-serine phosphate and DL-serine phosphate is quite good. In the monoanionic monophosphates, the negative charge on the phosphate group is mainly delocalized among the phosphate bonds, P–O(2) (1·491 Å) and P–O(3) (1·500 Å); however, there is a tendency for the P–O<sup>-</sup> bond to be slightly longer than the P=O bond, as seen in all of the known phosphates (Table 7). The P–O bond length order in monoanionic phosphates is

$$P-OC > P-OH > P-O^{\pm-} (P=O-P\leftrightarrow O^{-}),$$

with a difference of about 0.05 Å between P-OC and P-OH on one hand and P-OH and P-O<sup> $\pm$ </sup> on the other (Cruickshank, 1961; Sundaralingam & Jensen, 1965b). Hence, a knowledge of the P-O bond distances is sufficient to indicate the presence or absence of a hydrogen substituent on the phosphate oxygen atoms.

The O-P-O valence angles in L-serine phosphate range from 101.5 to  $114.8^{\circ}$ . The smallest angle involves the substituted oxygen atoms O(1) and O(4), while the largest angle involves the unsubstituted atoms O(2) and O(3). The latter angle is about 2° smaller than the other known monoanionic phosphates (Table 7). The



Fig. 5. Weighted average bond distances and angles in the monoanionic monophosphate.

|                                      |       |       |       | Tab   | ole 7. Bond | distances an | d angles   |
|--------------------------------------|-------|-------|-------|-------|-------------|--------------|------------|
|                                      | P=O   | P–O   | РОН   | P-OR  | ∑(PO)       | P-OC         | $\sigma^*$ |
|                                      | (Å)   | (Å)   | (Å)   | (Å)   | (Å)         | (Å)          | (Å)        |
| Adenosine 3'-phosphate               | 1.477 | 1.486 | 1.579 | 1.612 | 6.154       | 1.440        | 0.005      |
| Adenosine 5'-phosphate               | 1.495 | 1.503 | 1.557 | 1.591 | 6.146       | 1.475        | 0.011      |
| 2-Aminoethanol phosphate             | 1.493 | 1.504 | 1.551 | 1.591 | 6.144       | 1.429        | 0.002      |
| Cytidine 3'-phosphate (orthorhombic) | 1.483 | 1.201 | 1.553 | 1.611 | 6.149       | 1.431        | 0.003      |
| Cytidine 3'-phosphate (monoclinic)   | 1.480 | 1.498 | 1.588 | 1.610 | 6.196       | 1 435        | 0.009      |
| Galactosamine 1-phosphate            | 1.499 | 1.510 | 1.553 | 1.606 | 6.168       | •1•434       | 0.003      |
| L-Serine phosphate                   | 1.491 | 1.500 | 1.544 | 1.590 | 6.125       | 1.433        | 0.003      |
| Weighted average $(\bar{l})$         | 1.490 | 1.502 | 1.554 | 1.602 | 6.149       | 1.434        |            |
| $\sigma_m^{\dagger}$                 | 0.003 | 0.003 | 0.007 | 0.006 | 0.009       | 0.006        |            |

\* Reported estimated standard deviation.

† Standard deviations in the mean,  $\sigma_m = \left[\sum (l-l)^2/n(n-1)\right]^{1/2}$ .

O–P–O valence angle in the C–O–P–O–H system is similar to that observed for the C–O–P–O–C system of phosphodiesters (Sundaralingam, 1969). The weighted average bond distances and bond angles involving the monoanionic monophosphates are shown in Fig. 5. The small variations in the individual P–O bond distances and the O–P–O valence angles may be attributed to the number and strengths of the hydrogen bonds to the phosphate group and the conformation of the atom sequence H–O–P–O–C of the phosphate. Conformational changes usually produce changes in nonbonded interactions and therefore affect the molecular dimensions.

As in DL-serine phosphate, the C(2)-C(3)-O(1) bond angle of  $105\cdot3^{\circ}$  in L-serine phosphate is considerably less than the tetrahedral value.

#### Molecular conformation

The conformation of the molecule is shown in Fig. 2 and compared with those of DL-serine and  $L_s$ -threonine in Fig. 6 and Table 8. Although the molecular conformation is similar to that of DL-serine phosphate, nonetheless there are significant differences of 2 to 20° in the torsion angles of the two compounds. These differences in the torsion angles are attributable to hydrogen bonding and molecular packing forces. Similar and even larger variations in the torsion angles of the serine (Table 8) and the serine phosphate residues of membrane proteins and lipids might conceivably occur during ion transport across biological membranes (Sundaralingam, 1968).

The ammonium group is almost perfectly staggered to the substituent on C(2). The ammonium nitrogen atom is only slightly displaced from the plane of the carboxyl group; the torsion angle N-C(2)-C(1)-O(6)is  $-2.6^{\circ}$ . The torsion angles (Lakshminarayanan, Sasisekharan & Ramachandran, 1967)

and

$$\psi_1[N-C(2)-C(1)-O(1)]$$

$$\psi_2[N-C(2)-C(1)-O(2)]$$

for the accurately analyzed amino acid structures are

shown in Table 6. It is seen that as a general rule the ammonium nitrogen atom is not coplanar with the carboxyl group [the  $\alpha$ -hydroxy acids show a similar feature (Sundaralingam & Putkey, 1969)]; the torsion angle  $\psi_2$  assumes only small (0-4°) positive values and a large range (-1.1 to -38.1°) of negative values. Thus, the deviation from coplanarity is such that the pref-



Fig. 6. Conformations of (a) DL-serine phosphate, (b) L-serine phosphate, (c) DL-serine, and (d)  $L_s$ -threonine, viewed down the  $C_x$ -C' bond. Note that the hydroxy group is *anti* to the ammonium groups in (a) and (b), and the ammonium nitrogen atom is displaced on the opposite side of the carboxyl group in (c).

| O=P-O <sup>-</sup> | HO-P-O- | O=P-OH | O=P-OR | -0- <b>P-</b> -OR | HO-P-OR | P-O-C | $\sigma$ |                                  |
|--------------------|---------|--------|--------|-------------------|---------|-------|----------|----------------------------------|
| (°)                | (°)     | (°)    | (°)    | (°)               | (°)     | (°)   | (°)      | Reference                        |
| 117.2              | 112.3   | 107.1  | 110.7  | 103.4             | 105.5   | 119.1 | 0.3      | Sundaralingam (1966)             |
| 118.2              | 106.9   | 110.2  | 108.7  | 108.7             | 106.9   | 114.7 | 0.4      | Kraut & Jensen (1963)            |
| 117.0              | 109.3   | 109.8  | 103.9  | 109.6             | 106.2   | 118.7 | 0.5      | Kraut (1961)                     |
| 116.0              | 106.1   | 113.6  | 110-1  | 108.5             | 101.5   | 121-2 | 0.5      | Sundaralingam & Jensen (1965a)   |
| 117.5              | 105.4   | 112.6  | 105.5  | 110.9             | 104.3   | 118.5 | 1.0      | Bugg & Marsh (1967)              |
| 117.2              | 110.8   | 109.6  | 109.4  | 107.3             | 101.3   | 122-1 | 0.12     | Fries & Sundaralingam (1966b)    |
| 114.8              | 109.6   | 112.2  | 108.8  | 109.0             | 101.5   | 121.5 | 0.5      | Putkey & Sundaralingam<br>(1970) |
| 116.6              | 109.4   | 110.7  | 108.5  | 108.0             | 102.9   | 120.6 |          |                                  |
| 0.43               | 1.04    | 0.84   | 0.96   | 0.90              | 1.00    | 1.07  |          |                                  |



Fig. 7. View of the unit cell down the *a* axis showing the hydrogen bonding pattern and the alternating regions of hydrogen bonded and hydrophobic bonded channels; see text.

erential twist of the carboxyl group with respect to the ammonium group is counterclockwise (Fig. 6) (Lakshminarayanan *et al.*, 1967), irrespective of whether the carboxyl group is ionized or unionized. There is probably a simple reason for this preferential twist of the carboxyl group; the intramolecular  $C_{\beta} \cdots O(1)$  distance increases for a counterclockwise twist of the carboxyl group from the value at  $\psi_2 = 0^\circ$ , but decreases for a

in monoanionic monophosphates

clockwise twist of the carboxyl group. In DL-serine,  $\psi_2$  is 3.8°, and the C(3)...O(1) van der Waals contact is only 2.896 Å; consequently, any appreciable increase in the positive  $\psi_2$  values will produce severe nonbonded C(3)...O(1) interactions. In L-ornithine hydrochloride,  $\psi_2$  is  $-38.1^\circ$ , and the C(3)...O(1) distance (3.254 Å) is beyond the van der Waals contact distance, while the C(3)...O(2) distance (3.119 Å) is now approaching the van der Waals distance; thus any further appreciable increase in the negative  $\psi_2$ value will produce unfavorable C(3)...O(2) contacts. Therefore, the preferred value of  $\psi_2$  is centered at about  $-15.0^{\circ}$  for the amino acids (Table 6).

## Hydrogen bonding

There are five hydrogen bonds in this crystal structure; four of these are shown in Fig. 7 and the fifth is shown in Fig. 8. The only two oxygen atoms not participating in hydrogen bonds are the carbonyl oxygen atom of the carboxyl group and the ester oxygen atom of the phosphate group. DL-Serine phosphate exhibited a similar property. To date there is no known example of an intermolecular hydrogen bond involving the phosphate ester oxygen atom. However, in the amino acid structures with a carboxylate group, both the carboxyl oxygen atoms are usually involved in hydrogen bonding, while in the amino acid derivatives with the un-ionized carboxyl group, *e.g.* L-serine phosphate, DL-serine phosphate, L-valine hydrochloride, L-phenylalanine hydrochloride, the carbonyl group may not necessarily be involved in hydrogen bonding as demonstrated by the former two examples. The very

0

short hydrogen bond  $P=O\cdots H-O-C-$  of 2.492 Å occurs between the phosphate oxygen atom O(4) and the carboxyl hydroxyl oxygen atom O(5) of the 0k0 screw-related molecule. The shortest phosphate-phosphate hydrogen bond,  $P-O-\cdots H-O-P$ , 2.558 Å, involves the phosphates related by the 00*l* screw axis.

Table 8. Torsion angles in L-serine phosphate, DL-serine and Ls-threonine

| Bond sequence           | L-serine phosphate | DL-serine | Ls-threonine |
|-------------------------|--------------------|-----------|--------------|
| O(2)-P - O(1)-C(3)      | 80·1 °             |           |              |
| O(3) - P - O(1) - C(3)  | -45.8              |           |              |
| O(4) - P - O(1) - C(3)  | 161.4              |           |              |
| P = -O(1) - C(3) - C(2) | 153-2              |           |              |
| O(5)-C(1)-C(2)-C(3)     | - 60.9             | 55.8      | - 82.6       |
| O(5)-C(1)-C(2)-N        | 178.7              | 181.3     | 156-1        |
| O(6)-C(1)-C(2)-C(3)     | 117.7              | 126.7     | 95.1         |
| O(6)-C(1)-C(2)-N        | -2.6               | 3.8       | - 26.1       |
| C(1)-C(2)-C(3)-O(1)     | - 57.1             | - 53.1    | -177.4       |
| N - C(2) - C(3) - O(1)  | 61.3               | 69.2      | - 54.8       |
| O(1)-PO(4)-H(1)         | -97.0              |           |              |



Fig.8. View down the b axis of the unit cell showing the hydrogen bond not depicted in Fig.7.



There was little question here that the proton was attached to phosphate oxygen atom O(4), although the electron density of the proton was slightly diffuse. These two short hydrogen bonds run approximately normal to each other. The remaining three hydrogen bonds involve the protonated amino group; the two shorter hydrogen bonds, N-H $\cdots$ O(2), 2.780 Å, and N-H···C(3), 2.797 Å, are between the amino group and two different phosphate groups, and the third hydrogen bond, N-H···O(5), 2.964 Å, is between the amino group and the carboxyl hydroxyl group. It may be noted that the  $-NH_3^+$  group of amino acids is always involved in three hydrogen bonds. L-Serine phosphate occurs as a zwitterion with the amino group protonated by a phosphate proton. Terminal amino groups of proteins may be hydrogen bonded to phosphates in a similar manner.

The phosphate group is involved in five hydrogen bonds (Fig.9); O(4) is involved in a donor hydrogen bond, while O(2) and O(3) are each involved in two acceptor hydrogen bonds. All of the hydrogen bonds in this structure are nonlinear (Table 9), *i.e.* the proton does not lie on the line joining the donor and acceptor. The  $A_2$ -H···A<sub>3</sub> angles range from 153 to 168°, while the H- $A_2$ ···A<sub>3</sub> angles vary from 8 to 20°. The largest H- $A_2$ ···A<sub>3</sub> angle of 20° occurs in the case of the shortest hydrogen bond.

Viewed down the *a* axis, the crystal structure may be described as composed of hydrogen bonded and hydrophobic 'bonded' channels running down alternate h00 screw axes (Fig. 7). The hydrophobic channel is composed of the methylene protons, the carbonyl oxygen atom (which is not involved in hydrogen bonding) and the 'back end' of the phosphate hydroxyl group.

This work was supported by a research grant No. GM-14828 and a Career Development Award, GM-42412, to one of us (M.S.) from the National Institutes of Health of the United States Public Health Service.

#### References

- ANDO, O., ASHIDA, T., SASADA, Y. & KAKUDO, M. (1967). Acta Cryst. 23, 172.
- BUGG, C. E. & MARSH, R. (1967). J. Mol. Biol. 25, 67.
- BUSING, W. R., MARTIN, R. O. & LEVY, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CHIBA, A., UEKI, T., ASHIDA, T., SASADA, Y. & KAKUDO, M. (1967). Acta Cryst. 22, 863.
- CRUICKSHANK, D. W. J. (1961). J. Chem. Soc. p. 5486.
- DERISSEN, J. L., ENDEMAN, H. J. & PEERDEMAN, A. F. (1968). Acta Cryst. B24, 1349.
- DONOHUE, J. & CARON, A. (1964). Acta Cryst. 17, 1178.
- DONOHUE, J. & TRUEBLOOD, K. N. (1952). Acta Cryst. 5, 419.
- FRIES, D. C. & SUNDARALINGAM, M. (1969a). To be published.

- FRIES, D. C. & SUNDARALINGAM, M. (1969b). To be published.
- GURSKAYA, G. V. (1968). The Molecular Structure of Amino Acids, p. 81. New York: Consultants Bureau.
- HARDING, M. M. & LONG, H. A. (1968). Acta Cryst. B24, 1096.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- Існікаwа, Т. & Ігтака, Ү. (1968). Acta Cryst. B24, 1488.
- IITAKA, Y. (1960). Acta Cryst. 13, 35.
- ІІТАКА, Ү. (1961). Acta Cryst. 14, 1.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JACOBSEN, R. A., WUNDERLICH, J. A. & LIPSCOMB, W. N. (1961). Acta Cryst. 14, 598.
- KARLE, I. & KARLE, J. (1964). Acta Cryst. 17, 835.
- KLUG, H. P. & ALEXANDER, L. E. (1954). X-ray Diffraction Procedures. New York: John Wiley.
- KRAUT, J. (1961). Acta Cryst. 14, 1146.
- KRAUT, J. & JENSEN, L. H. (1963). Acta Cryst. 16, 79.
- LAKSHMINARAYANAN, A. V., SASISEKHARAN, V. & RAMA-CHANDRAN, G. N. (1967). In *Conformations of Biopolymers*, Vol. 1. Ed. G. N. RAMACHANDRAN. New York: Academic Press.
- McCallum, G. H., ROBERTSON, J. M. & SIM, G. A. (1959). Nature, Lond. 184, 1863.
- MALLIKARJUNAN, M. & RAO, S. T. (1969). Acta Cryst. B25, 296.
- MARSH, R. E. (1958). Acta Cryst. 11, 654.
- MARSH, R. E. & DONOHUE, J. (1967). Advanc. Protein Chem. 22, 235.
- OUGHTON, B. M. & HARRISON, P. M. (1959). Acta Cryst. 12, 396.
- PUTKEY, E. F. & SUNDARALINGAM, M. (1970). Acta Cryst. B26, 782.
- SHOEMAKER, D. P., BARIEAU, R. E., DONOHUE, J. & LU, C.S. (1953). Acta Cryst. 6, 241.
- SHOEMAKER, D. P., DONOHUE, J., SCHOMAKER, V. & COREY, R. B. (1950). J. Amer. Chem. Soc. 72, 2328.
- SIMPSON, H. J. & MARSH, R. E. (1966). Acta Cryst. 20, 550.



- Fig.9. The hydrogen-bonded surroundings of the phosphate group. Numbers appearing after hyphens are the symmetry numbers of Table 9.
- STEWART, R. F., DAVIDSON, E. & SIMPSON, W. (1965). J. Chem. Phys. 42, 3175.
- SUNDARALINGAM, M. (1966). Acta Cryst. 21, 495.
- SUNDARALINGAM, M. (1968). Nature, Lond. 217, 35.
- SUNDARALINGAM, M. (1969). Biopolymers, 7, 821.
- SUNDARALINGAM, M. & JENSEN, L. H. (1965a). J. Mol. Biol. 13, 914.
- SUNDARALINGAM, M. & JENSEN, L. H. (1965b). J. Mol. Biol. 13, 930.
- SUNDARALINGAM, M. & PUTKEY, E. F. (1969). Unpublished results.
- VAINSHTEIN, B. K. & GURSKAYA, G. V. (1964). Dokl. Akad. Nauk USSR, 156, 312.
- WRIGHT, D. A. & MARSH, R. E. (1962). Acta Cryst. 15, 54

Acta Cryst. (1970). B26, 800

## The Refinement of the Crystal Structure of the Perylene–Tetracyanoethylene Complex

## By Isao Ikemoto, Kyuya Yakushi and Haruo Kuroda

Department of Chemistry, Faculty of Science, The University of Tokyo, Tokyo, Japan

#### (Received 18 June 1969)

Crystals of the 1:1 complex of perylene and tetracyanoethylene (TCNE) are monoclinic, space group  $P2_1/a$  with a=15.763, b=8.234, c=7.346 Å,  $\beta=96.4^{\circ}$ , Z=2. The structure was refined by the blockdiagonal least-squares method, on the basis of three-dimensional photographic data. Perylene and TCNE molecules are stacked alternately along the *b*-axis direction, making their molecular planes almost parallel to each other. The mean separation of the molecular planes is 3.186 Å.

### Introduction

There is a common feature in the  $\pi$ -molecular complex; the donor and acceptor molecules are alternately

stacked, plane-to-plane, along some crystal axis with relatively small separation between molecular planes. The relative orientations of donor and acceptor molecules in the crystal are various (Prout & Wright, 1968).

800